Changes in <em>Eutric Cambisol</em> due to long-term mineral fertilisation: A case study in Serbia

Authors

  • Nikola Koković Institute of Soil Science, Belgrade
  • Goran Jačimović University of Novi Sad, Faculty of Agriculture, Novi Sad https://orcid.org/0000-0001-7538-6006
  • Biljana Sikirić Institute of Soil Science, Belgrade
  • Vladimir Čirić University of Novi Sad, Faculty of Agriculture, Novi Sad
  • Vladan Ugrenović Institute of Soil Science, Belgrade
  • Aigul Zhapparova Kazakh National Agrarian Research University
  • Elmira Saljnikov Institute of Soil Science, Belgrade, Serbia; Mitscherlich Academy for Soil Fertility (MITAK) GmbH, Paulinenaue https://orcid.org/0000-0002-6497-2066

DOI:

https://doi.org/10.4081/ija.2022.2029

Keywords:

Nitrogen, acidification, nutrients, clay, degradation, soil microflora.

Abstract

The paper presents the results of a 50-year fertilisation experiment on Eutric Cambisol with increasing doses of nitrogen and constant doses of phosphorus and potassium. The changes in main parameters of soil fertility were compared with the initial level at the beginning of the experiment in 1963 (baseline), as well as with the adjacent natural meadow soil. The long-term application of mineral fertilisers without replenishment of calcium resulted in strong acidification, an increase in clay content, an increase in the number of fungi, and a decrease in the number of ammonifiers and oligonitrophiles. In the fertilised treatments, an increase in the content of plant-available phosphorus and potassium and a significant decrease in the plant available boron and zinc with an increase in the N dose were observed. Long-term addition of high doses of N harmed the total number of microflora, actinomycetes, ammonifiers, and oligonitrophiles compared to untreated meadow soil. Significant changes in soil’s physical and chemical properties resulted in the transformation of Eutric Cambisol into Dystric Cambisol. Inappropriate agricultural practices, such as adding only mineral fertilisers, can lead to significant soil degradation even on the sites with favourable bioclimatic conditions for cropping. The results showed that causal chains between microbiological and chemical parameters need to be better researched and understood in the future. This and other long-term experimental results should be used to calibrate agro-ecosystem models in Serbia.

Highlights
- Due to a long-term mineral fertilisation Eutric Cambisol transformed into Dystric Cambisol.
- A sharp drop in soil pH did not affect the yield of crops.
- The total number of microflora correlated with the amount of fungi in the soil.
- Degradation of soil fertility parameters persists under mineral fertilisation.

Downloads

Download data is not yet available.

References

Akhtar-Schuster M, Stringer LC, Erlewein A, Metternicht G, Minelli S, Safriel U, Sommer S, 2017. Unpacking the concept of land degradation neutrality and addressing its operation through the Rio Conventions. J. Environ. Manag. 195:4-15

Alvarez R, 2005. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manag. 21:38-52.

Belanović S, Ćakmak D, Kadović R, Beloica J, Perović V, Alnaass N, Saljnikov E, 2012. Availability of some trace elements (Pb, Cd, Cu and Zn) in relation to the properties of pasture soils in Stara Planina Mountain. Bull. Facul. For. 106:41-56.

Berti A, Morari F, Dal Ferro N, Simonetti G, Polese R, 2016. Organic input quality is more important than its quantity: C turnover coefficients in different cropping systems. Eur. J. Agron. 77:138-45.

Burt R, 2014. Kellogg soil survey laboratory methods manual. United States department of agriculture, natural resources conservation service, National Soil Survey Center, Lincoln, Nebraska. Available from: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1253872.pdf Accessed: August 5, 2021.

Čakmak D, Saljnikov E, Mrvić V, Jakovljević M, Marjanović Z, Sikirić B, Maksimović S, 2010a. Soil properties and trace elements contents following 40 years of phosphate fertilization. J. Environ. Qual. 39:541-7.

Čakmak D, Saljnikov E, Perovic V, Jaramaz D, Mrvic V, 2010b. Effect of long-term nitrogen fertilization on main soil chemical properties in Cambisol. Proc. 19th World Congr. Soil solutions for changing world. Brisbane, Australia 1-6 August, pp. 291-293. Available from: https://www.iuss.org/19th%20WCSS/Symposium/pdf/D3.2.pdf#page=296

Chatterjee D, Datta SC, Manjaiah KM, 2014. Fractions, uptake and fixation capacity of phosphorus and potassium in three contrasting soil orders. J. Soil Sci. Plant Nutr. 14:640-56.

Craig H, Antwis R, Cordero I, Ashworth D, Robinson CH, Osborne TZ, 2021. Nitrogen addition alters composition, diversity, and functioning of microbial communities in mangrove soils: An incubation experiment. Soil Biol. Biochem. 153:108076.

Dal Ferro N, Piccoli I, Berti A, Polese R, Morari F. 2020. Organic carbon storage potential in deep agricultural soil layers: Evidence from long-term experiments in northeast Italy. Agric. Ecosys. Environ. 300:106967.

Danilov D, Yakovleva L, Nikolaeva E, 2020. Efficiency of lime application on sod-podzolic soil in the north-western region of Russia. BIO Web Conf. 17:00129.

Egnér H, Riehm H, Domingo WR, 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungl Lantbrukshögskolans Annaler 26:199-215.

European Commission, 2019. The European Green Deal. COM(2019) 640 final.

FAO, 2006. Food and Agriculture Organization of the United Nations. Plant nutrition for food security. Available from: http://www.fao.org/3/a-a0443e.pdf Accessed: August 3, 2021.

FAO, 2017. Voluntary guidelines for sustainable soil management. Food and Agriculture Organization of the United Nations Rome, Italy. Available from: http://www.fao.org/3/a-bl813e.pdf

Ghimire R, Bista P, Machado S, 2022. Crop yield limitation by soil organic matter decline: a case study from the US Pacific Northwest; Chapter 27. In: Salnjikov E, Mueller L, Lavrishev A, Eulenstein F (Eds.), Advances in understanding soil degradation. Springer, Nature: Gewerbestrasse 11, 6330 Cham, Switzerland AG.

Ghimire R, Machado S, Bista P, 2017. Soil pH, soil organic matter, and crop yields in winter wheat-summer fallow systems. Agronomy J. 109:706-17.

Goulding GWT, 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 32:390-9.

Govedarica M, Jarak M, 1996. Praktikum iz mikrobiologije. 2nd ed. Faculty of Agriculture, Novi Sad, Serbia. [In Serbian].

Guo J, Jia Y, Chen H, Zhang L, Yang J, Zhang J, Hu X, Ye X, Li Y, Zhou Y, 2019. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Sci Rep. 9:1248.

Gupta R, Sahoo RN, Abrol I. 2019. Does soil testing for fertilizer recommendation fall short of a soil health card? J. Agron. Res. 1:15-26.

Huang L, Riggins CW, Villamil MB, Rodríguez-Zas S, Zabaloy MC, 2019. Long-term N fertilization imbalances potential N acquisition and transformations by soil microbes. The Sci. Tot. Environ. 691:562-71.

IPBES, 2018. Land Degradation and Restoration Assessment. IPBES Secretariat, Bonn, Germany. Available from: https://ipbes.net/assessment-reports/ldr

ISO-11272:1993. Soil quality - Determination of dry bulk density. International organization for standardization, Geneva, Switzerland, pp. 10.

ISO-11277:1998. Soil quality - Determination of particle size distribution in mineral soil material. Method by sieving and sedimentation. International organization for standardization, Geneva, Switzerland, pp. 34.

Ivović P, Tatić-Kovačević R, Marković N, Popović Ž, Stevanović D, Janković M, Pantović M, Martinović LJ, 1979. Rezultati višegodišnjih ogleda sa mineralnim đubrivima na nekim zemljištima Srbije. Institut za zemljište. Beograd, Serbia. [In Serbian].

Jakovljević M, Pantović M, Blagojević S, 1985. Praktikum iz hemije zemljišta i voda. Poljoprivredni fakultet, Belgrade, Serbia. [In Serbian].

Jakšić S, Ninkov J, Milić S, Vasin J, Banjac D, Jakšić D, Živanov M, 2021. The state of soil organic carbon in vineyards as affected by soil types and fertilization strategies (Tri Morave Region, Serbia). Agronomy 11:9.

Jiang J, Wang Y, Yu M, Cao N, Yan J, 2018. Soil organic matter is important for acid buffering and reducing aluminium leaching from acidic forest soils. Chem. Geol. 501:86-94.

Jones C, Engel R, Olson-Rutz K, 2020. Soil acidification in the semiarid regions of North America’s Great Plains. Crops and Soils 52:28-56.

Kappen H, 1929. Die Bodenazidität. Verlag Von Julius Springer, Berlin, Germany.

Khan SA, Mulvaney RL, Ellsworth TR, Boast CW, 2007. The Mith of nitrogen fertilization for carbon sequestration. J. Environ. Qual. 36:1821-32.

Koković N, Saljnikov E, Dinić Z, Sikirić B, Mrvić V, Neranđić B, 2018. Hemijske osobine zemljišta posle 50 godišnjeg đubrenja zemljišta mineralnim đubrivima. Zemlj. Bilj. 67:1-9. Available from: http://www.sdpz.rs/images/casopis/2018/ZIB_vol67_no2_2018_pp01-09.pdf Accessed: August 20, 2021.

Koković N, Saljnikov E, Eulenstein F, Čakmak D, Buntić A, Sikirić B, Ugrenović V, 2021. Changes in soil labile organic matter as affected by 50 years of fertilization with increasing amounts of nitrogen. Agronomy 11:2026.

Kong WD, Zhu YG, Fu BJ, Han XZ, Zhang L, He JZ, 2008. Effect of long-term application of chemical fertilizers on microbial biomass and functional diversity of a black soil. Pedosphere 18:801-8.

Körschens M, 2021. Long-term field experiments (LTEs)-Importance, overview, soil organic matter. In: Mueller L, (Eds.), Exploring and optimizing agricultural landscapes - Innovations in landscape research. Springer Nature, Switzerland, pp. 215-232.

Kresović MM, 1999. Comparative studies of methods for assessing the accessibility of soil nitrogen. (Uporedna proučavanja metoda za ocenu pristupačnosti zemljišnog azota). Doctoral thesis, Belgrade University, Serbia.

Li Y, Zhou J, Hao D, Yang S, Su Y, 2020. Arabidopsis under ammonium oversupply: charavteristics of ammonium toxicity in relation to the activity of ammonium transporters. Pedosphere 30:314-25.

Madaras M, Koubová M, 2015. Potassium availability and soil extraction tests in agricultural soils with low exchangeable potassium content. Plant Soil Environ. 61:234-9.

Mahedi M, Cetin B, Dayioglu AY, 2019. Leaching behavior of aluminum, copper, iron and zonc from cement activated fly ash and slag stabilized soils. Waste Manag. 95:334-55.

Mc Lean, Brown JC, 1984. Crop response to lime in the Midwesstern United States. In: Adam F. (Ed.), Soil acidity and liming-Agronomy Monograph No 12, ASA-CSSA-SSSA, Madison, WI, USA, pp 267-303.

Mengel K, Kirkby EA, Kosegarten H, Appel T, 2001. Nitrogen. In: Mengel K., Kirkby E.A., Kosegarten H., Appel T. (Eds.), Principles of plant nutrition. Springer, Dordrecht, pp. 397-434.

Montanarella L, Panagos P, 2021. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 100:104950.

Mrvić V, Jakovljević M, Stevanović D, Čakmak D, 2007. The forms of aluminium in Stagnosols in Serbia. Plant Soil Environ. 53:482-9.

Niu G, Wang R, Hasi M, Wang Y, Geng Q, Wamg C, Jiang Y, Huang J, 2021. Availability of soil base cations and micronutrients along soil profile after 13-year nitrogen and water addition in a semi-arid grassland. Biogeochemistry.

Okada K, Nishimuta K, Kameshima Y, Nakajima A, MacKenzie KJ, 2005. Reaction of phosphate compounds with a high-silica allophane. Clay Miner. 53:372-9.

Pasley HR, Cairns JE, Camberato JJ, 2019. Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. Nutr. Cycl. Agroecosyst. 115:373-89.

Pavlova O, Litvinovich A, Lavrishchev A, Bure V, Saljnikov E, 2019. Eluvial losses of Ca from Ubmric Albeluvisol Abraptic produced by different doses of lime: column experiment, Zemlj. Bilj. 68:1-12. Accessed: August 18, 2021.

Pešaković M, Mandić L, Đukić D, 2006. Microbiological productivity of smonitza in mineral and organic fertilization conditions. Acta Agric. Serbica 11:75-82.

Raza S, Miao N, Wang P, 2020. Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands. Global Change Biol. 26:3738-51.

Rehm G, Schmitt M, 2002. Potassium for crop production. University of Minnesota Extension. Available from: http://www.extension.umn.edu/agriculture/nutrient-management/potassium/potassium-for-crop-production/

Sainju UM, Allen BL, Caesar-TonThat T, Lenssen AW, 2015. Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence. Springer Plus 4:230.

Sainju UM, Ghimire R, Pradhan GP, 2019. Nitrogen fertilization I: Impact on crop, soil, and environment, nitrogen fixation, Everlon Cid Rigobelo and Ademar Pereira Serra, IntechOpen, doi: 10.5772/intechopen.86028.

Saljnikov E, Lavrishchev A, Römbke J, Rinklebe J, Scherber C, Wilke B-M, Tóth T, Blum WEH, Behrendt U, Eulenstein F, Mirschel W, Meyer B, Schindler U, Urazaliev K, Mueller L, 2022. Understanding and monitoring chemical and biological soil degradation. In: Saljnikov E., Mueller L., Lavrishchev A., Eulenstein F. (Eds.), Advances in understanding soil degradation. Innovations in Landscape Research. Springer, Cham. pp. 75-124.

Saljnikov E, Čakmak D, Perović V, Kostić-Kravljanac Lj, Mrvić V, Sikirić B, 2010. Višegodišnje đubrenje pik i uticaj na zemljišne karakteristike u kambisolu, Srbija. Zemlj. Bilj. 59:213-8.

Šeremešić S, Ćirić V, 2022. Labile soil carbon as an indicator of soil organic matter quality in the Province of Vojvodina, Serbia. Chapter 30. In: Saljnikov E, Mueller L, Lavrishchev A, Eulenstein F (Eds.), Advances in understanding soil degradation. Springer, Nature: Gewerbestrasse 11, 6330 Cham, Switzerland.

Sikirić B, Mrvić V, Stevanović D, Maksimović S, Stajković O, Bogdanović D, 2009. The effects of calcification, urea and Al salts on Fe, Mn and Al contents in the soil and raspberry leaves. Agrochimica 53:250-9.

Sikirić B, Stajković-Srbinović O, Čakmak D, Delić D, Koković N, Kostić-Kravljanac Lj, Mrvić V, 2015. Macronutrient contents in the leaves and fruits of red raspberry as affected by liming in an extremely acid soil. Plant Soil Environ. 61:23-8.

Soltanpour PN, Johnson GW, Workman SM, Bentonjones JJ, Miller RO, 1996. Inductively coupled plasma emission spectrometry and inductively coupled plasma-mass spectrometry. In: Sparks S.L. (Eds.), Methods of soil analysis - Part 3 Chemical methods. Soil Science Society of America, Madison, WI, USA, pp. 91-140.

Stajković-Srbinović O, Buntić A, Rasulić N, Kuzmanović Đ, Dinić Z, Delić D, Mrvić V, 2018. Microorganisms in soils with elevated heavy metal concentrations in southern Serbia. Arch. Biol. Sci. 70:707-16.

Stanojkovic-Sebic A, Djukic DA, Mandic L, Pivic R, Stanojkovic A, 2012. Evaluation of mineral and bacterial fertilization influence on the number of microorganisms from the nitrogen cycle in soil under maize. Commun. Soil Sci. Plant 43:2777-88.

Treseder KK, 2008. Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies. Ecol. Lett. 11:1111-20.

UNDP, 2015. The Sustainable Development Goals. Available from: https://www.undp.org/sustainable-development-goals

Vojinovic Z, Radulovic V, Modric A, Strunjak R, Prsa M, Petrovic V, Saric Z, Todorovic M. 1966. Microbiological testing of the soil profile. In: Tesic Z, Todorovic M (Eds.), Manual for the microbiological analysis of soils and waters. Belgrade, Yugoslavia: Yugoslav Society of Soil Science, pp. 7-57.

Vojnov B, Šeremešić S, Ćupina B, Krstić Đ, Vujić S, Živanov M, Pavlović S, 2020. Sadržaj labilne organske materije černozema u sistemu zaoravanja međuuseva i naknadne setve jarih useva. Zemlj. Biljka 69:82-94.

Wei H, Liu Y, Xiang H, Zhang J, Li S, Yang J, 2020. Soil pH responses to simulated acid rain leaching in three agricultural soils. Sustainability 12:280.

Weil RR, Brady NC. 2017. Soil phosphorus and potassium. Chapter 14. The Nature and Properties of Soils, 15th ed. Pearson, Columbus, OH, USA, pp. 6433-695.

Wen Y, Li H, Lin Z, Zhao B-Q, Sun Z-B, Yuan L, Xu J-K, Li Y-Q, 2020. Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain. Sci. Rep. 10:7198.

Williams MG, Busta FF. 1999. Total viable counts/Most Probable Number (MPN). In: Encyclopedia of Food Microbiology.

WRB, 2015. World reference base for soil resources. Food and Agriculture Organization of the United Nations, Rome, Italy.

Yan J-H, Zhou G-Y, Zhang D-Q, Chu G-W. 2007. Changes of soil water, organic matter, and exchangeable cations along a forest successional gradient in southern China. Pedosphere 17:397-405.

Yang X, Yungli L, Ding Y, Yin X, Raza S, Tong Y, 2017. Optimising nitrogen fertilization: A key to improving nitrogen-use efficiency and minimizing nitrate leaching losses in an intensive wheat/maize rotation (2008-2014). Field Crops Res. 206:1-10.

Zhang X, Davidson EA, Zou T, Lassaletta L, Quan Z, Li T, Zhang W, 2020. Quantifying nutrient budgets for sustainable nutrient management. Glob. Biogeochem. Cycl. 34:e2018GB006060.

Zhou Z, Wang C, Luo Y, 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11:3072.

Downloads

Published

29-06-2022

How to Cite

Koković, N., Jačimović, G. ., Sikirić, B., Čirić, V., Ugrenović, V. ., Zhapparova, A. ., & Saljnikov, E. (2022). Changes in <em>Eutric Cambisol</em> due to long-term mineral fertilisation: A case study in Serbia. Italian Journal of Agronomy, 17(2). https://doi.org/10.4081/ija.2022.2029

Issue

Section

Original Articles