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Potential of hyperspectral remote sensing for field scale soil mapping
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Abstract

Mapping within-field variation in soil properties opens up the pos-
sibility of employing variable agronomic management and precision
farming technologies with potential environmental and economic ben-
efits. However, the excessive cost of systematic direct soil sampling
severely constrains the practical feasibility of site specific manage-
ment based on soil variability information. Remote sensing offers a
cost effective and efficient means for gathering a great deal of infor-
mation on soil properties. The aim of the present work was to assess
the potential of satellite hyperspectral imagery for the mapping of soil
properties in the tilled layer of agricultural fields, in the context of pre-
cision agriculture applications. CHRIS-PROBA satellite images were
acquired over two bare soil fields and their capability to provide esti-
mates of soil texture and soil organic matter (SOM) at the field scale
was assessed. Partial least squares regression (PLSR) models were
developed on datasets spatially independent from those used for vali-
dation. Clay and sand could be estimated with intermediate accuracy,
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with values of RPD (ratio of performance to deviation) higher than 1.4.
Root mean squared error (RMSE) values of 3.7 and 5.2 were obtained
for clay in the two fields respectively. SOM estimates were not satisfac-
tory, probably because of the limited range of spatial variation in the
studied fields.

Maps of uniform soil zones were obtained from measured and esti-
mates soil texture data by means of fuzzy c-means classification. The
resulting maps were then used for the parameterization of a simple
water balance model, i.e. CropWat8.0, in order to simulate and com-
pare uniform and variable-rate irrigation strategies. Simulation
results suggest that site-specific irrigation allows to reduce signifi-
cantly water losses by deep percolation, which occur when irrigation
scheduling and volumes are calculated on the basis of average field
soil properties. The present paper demonstrates the usefulness of
satellite hyperspectral data for mapping soil spatial variability at the
field scale, providing useful information for precision agriculture
applications.

Introduction

Information on the variability of soil properties within agricultural
fields is of paramount importance for the purpose of implementing
site-specific agronomic management strategies. Site-specific farming
practices take into account such variability and allow a more efficient
use of resources such as water and fertilizers (Gebbers and Adamchuk,
2010). However, practical solutions for rapid and low-cost mapping of
soil properties are still lacking. The availability of detailed information
on soil properties at the field scale is generally insufficient for the
application of site-specific techniques, being currently a limiting fac-
tor for their implementation, given the excessive cost of spatially
dense soil sampling and analysis. Consequently, there is great interest
in the development of low cost and rapid soil mapping methods, and in
this context proximal soil sensing, based on the measurement of geo-
electrical or spectral soil properties, seems to offer good opportunities
(Viscarra Rossel et al., 2011). Remote sensing from airborne and espe-
cially from space-borne platforms, would be in theory even more
appealing than proximal soil sensing, due to its lower cost and the pos-
sibility of avoiding the use of specific field equipment. Hyperspectral
remote sensing in particular, has potential in this sense (Ben-Dor et
al., 2009), though there are several problems limiting this kind of
application: small range of variation of within-field soil properties,
high spatial resolution required, difficulty to relate sensed soil surface
properties to variable of agronomic interest throughout the tilled layer.

There are very few examples of studies for this kind of applications
using satellites with hyperpectral capabilities, in particular employing
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CHRIS-PROBA (European Space Agency’s pushbroom Compact High
Resolution Imaging Spectrometer). In the next few years, the launch of
satellites carrying high spatial resolution hyperspectral sensors, such
as the German EnMAP (Kaufman et al., 2006) or the Italian PRISMA
(Labate et al., 2009), could open up new possibilities for the remote
estimation of soil properties.

The objectives of this study was that of assessing the potential of
CHRIS, and in perspective of forthcoming sensors, for soil properties
estimation and of evaluating their potential usefulness for precision
agriculture applications though an example concerning variable irriga-
tion strategies.

Materials and Methods

Satellite hyperspectral images were acquired by CHRIS-PROBA, over
two bare soil fields in Maccarese (Roma, Italy) on 27 April 2007 and 25
May 2010. CHRIS was configured in mode 5, including 37 bands in the
visible and near infrared range (442-1019 nm) with a pixel size of 17
m. CHRIS data were pre-processed using the CHRIS-Box software
(VISAT 4.7). Vertical striping was reduced using the algorithm of
Goémez-Chova et al. (2008). Atmospheric correction was performed
using the FLAASH module, implemented in ENVI 4.7 (ITT VIS, Boulder,
CO, USA). The reflectance values obtained were further geocoded in
UTM ED 1950 mean projection and corrected using 30 Ground Control
Points for each field, extracted from Latium Regional Technical Map at
a scale of 1:10,000. Further refinement included the application of a
local warping procedure (nearest neighbor resampling) using an ortho-
photo (0.5 m resolution) of the selected area as reference (Dai and
Khorram, 1998). A mean RMS of 0.61 pixels was achieved with respect
to the ortho-photo.

In the days immediately following the satellite data acquisition, a
systematic soil sampling along an approximate grid of 40 m was carried
out. Samples were collected in the 0-30 cm soil layer in a 11 ha section
of a field coded as B064 and in two sections, respectively of 15 and 12
ha of a field coded as B071. Samples were dried and sieved at 2 mm.
Particle size analysis and soil organic matter (SOM) analysis were car-
ried out for all the 97 samples of field B064 and the 117 samples of field
B071. The data were then interpolated by block kriging, using stable or
spherical variogram models, to the same spatial resolution and grid of
the CHRIS pixels. Therefore, the reflectance spectrum of each pixel in
the CHRIS image was associated to the corresponding soil properties.

The spectral behaviour of a set of 146 soil samples at a range of soil
moisture contents was studied in the lab using the Analytical Spectral
Devices (ASD) Field Spec Fr Pro 104 spectroradiometer, which meas-
ures radiance in the 350-2500 nm spectral range, converted to
reflectance using a calibrated Spectralon panel. The soil samples were
placed in Petri dishes over a black surface and the spectra were
acquired in the dark using the ASD contact (plant) probe with an inter-
nal light source at a distance of a few mm from the soil. Spectroscopic
measurements were carried out at different moisture contents by first
leaving samples to equilibrate on wet sand until saturation, then spec-
tra were collected, the samples were weighted and subsequently placed
in an oven at 80°C for about 30 min before acquiring again other spec-
tra. This sequence was repeated until the samples were completely dry.

The objective of such tests was to verify wether the variation of soil
moisture was a confounding factor for the determination of soil texture
and organic matter. For that reason, preliminary tests were performed
by carrying out estimates separately for three groups of dry, wet and
intermediate moisture samples as well for mixed moisture sets, i.e.
including both dry and moist samples. Since soil moisture measure-
ments had not been carried out at the times of satellite acquisitions, it
was not possible to carry out tests using the same soil moisture level
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corresponding to CHRIS-PROBA acquired spectra. In all trials, better
results were always obtained when using mixed moisture sets.
Therefore, in all subsequent tests, we used data sets containing spec-
tra at different soil moistures. Lab spectra were split in two randomly
extracted sets of two thirds for calibration and one third for validation,
51 and 26 for field B064 and 46 and 23 for field B071, respectively.

All spectra were converted into absorbance units as log(1/R), where
R is the reflectance value, since preliminary trials showed that using
absorbance enabled to reduce the number of components in the PLSR
(see following). Smoothing was applied to lab spectra using a Savitzky-
Golay filter (span=15, degree=2). In addition, the latter spectra were
also resampled to the same wavebands of the CHRIS sensor, in order to
investigate the effect of reducing spectral range and resolution.

Partial least squared regression (PLSR) was employed in order to
develop statistical models for the estimation of soil properties for lab
and satellite data sets. This multivariate statistical method allows to
reduce the number of predictors, providing the optimal linear model
through a restricted number of factors (Viscarra Rossel, 2008; Wold et
al.,, 1983). Leave one-out cross validation was used to determine the
number of factors to retain, using calibration data sets, by computing
the relative root mean squared error of prediction (RRMSEp). In this
procedure, the variation of RRMSEp values in response to an increas-
ing number of factors, allows to identify the lowest number of factors
for which the model performs well, avoiding over-fitting, since choos-
ing too many factors will provide models performing well only on the
data on which they were calibrated (Viscarra Rossel, 2008). Once deter-
mined the optimal number of factors from the leave one-out cross vali-
dation, the calibration models were then applied to independent valida-
tion sets. CHRIS image calibration data were obtained from a central
strip of the field B064 (147 pixels, i.e. spectra) and validation data from
lateral parts of the sampled area (232 pixels), whereas for field B071
the 15 ha NW section of the field (549 pixels) was used for calibration
and the 12 ha SE section (389 pixels) for validation. The performance
of the estimations was assessed by computing the root mean squared
error (RMSE) and the ratio of performance to deviation (RPD) (Chang
and Laird, 2002). It is assumed that models having a RPD>2 can accu-
rately predict, models having an RPD between 2 and 1.4 are intermedi-
ate and models having RPD<1.4 have no prediction ability (Chang and
Laird, 2002; Gomez et al., 2008).

In order to assess the potential usefulness of the information on
within-field soil texture variability, simulations of different irrigation
scenarios were carried out by applying a daily soil moisture balance and
irrigation scheduling model to 28 years of weather data from
Maccarese. The model used was CropWat 8.0 (FAO, 2009). The soil
parametrization was based on the use of uniform soil texture zones
from either block kriging or PLSR estimates. For this purpose, soil data
were clustered into classes by means of an unsupervised fuzzy c-means
classification, implemented through the Management Zone Analyst
(MZA) software (Fridgen et al., 2004), allowing the definition of an
optimal number of soil classes on the basis of minima of the fuzzyness
performance index and the normalized classification entropy. These
classes were assumed to correspond to uniform soil zones. The classi-
fication was performed using soil data both from block kriging and from
PLSR estimates obtaining 6 classes for each field for the two data
sources. The average soil properties of each soil class, plus the field
averages, were used to calculate the soil parameter requested by
CropWat, by means of the pedotransfer functions (Saxton and Rawls,
2006), assuming their homogeneity along the profile. Simulations
using the CropWat model were used to assess i) the potential useful-
ness of a spatially variable irrigation strategy, and ii) the consequences
of the use of imperfect knowledge of soil properties, such as that
derived from CHRIS PLSR estimates, on the management of spatially
variable irrigation.

Three irrigation scenarios were compared: i) uniform irrigation
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(UNI), in which an optimal irrigation schedule, corresponding to a
decision to irrigate when the readily available soil moisture was deplet-
ed, refilling the soil to field capacity at each irrigation, was calculated
on the basis of field average soil properties, but applied to the different
soils of the block kriging classes; ii) variable rate irrigation based on
measured soil properties (VRIs), in which the optimal irrigation sched-
ule was calculated on the basis of the soil properties of the block krig-
ing classes and applied these same classes; iii) variable rate irrigation
based on soil properties estimated from PLSR (VRI-PLSR), in which the
optimal irrigation schedule was calculated on the basis of the soil prop-
erties of the PLSR classes and applied the classes obtained from block
kriging of soil measurements. It should be noted that the UNI scenario
represents the practice adopted when only average field soil properties
are known, VRIs represents the practice adopted when soil properties
variability across the fields is accurately known and the VRI-PLSR sce-
nario simulates the situation in which imperfect data on soil properties
are available, such as from from CHRIS hyperspectral data estimates.
For scenario VRIs, in which variable rate irrigation (VRI) is applied
using daily soil water balance on the basis of soil properties assumed
to be correct, the potential yield is always attained and no irrigation
loss by deep percolation occurs. Conversely, when the irrigation sched-
ule is defined on the basis of an average soil for the whole field, but
applied to the different soil classes identified from MZA clustering of
block kriging data (i.e. the UNI scenario), both irrigation losses and
reductions from the potential yield can occur.

The seasonal totals for the whole fields of irrigation amounts, deep
percolation irrigation losses and potential yield reductions were calcu-
lated, for each scenario for the 28 years of data, by taking into account
the area covered by each soil class. CropWat calculates yield reduction
due to soil moisture stress as a percentage of the maximum production
achievable in the area under optimal conditions using the FAO33
approach (Doorenbos and Kassam, 1979).

Results

The PLSR carried out using full range ASD spectra (400 to 2500 nm)
allowed to develop models with a good prediction ability for field B064,
for the estimation of the percentage of clay, sand (RMSE=2.78,
RPD=3.02, with 9 components) and silt (RMSE= 1.07, RPD=3.97, with
16 components). The percentage of variance explained by the PLSR
components minimizing the RRMSEp in the leave one-out cross valida-
tion was 93% for clay, 94% for sand and 99% for silt. Conversely, SOM
was estimated with a RMSE of 0.13 and a RPD of 1.07 by the PLSR with
14 components. The poor performance for organic matter estimation is
probably due to the fact that low values of SOM (<3.5%) have been
found to have only a minimal effect on spectral response (Gomez et al.,
2008). In addition, the range of measured SOM values was rather nar-
row, spanning from 1.76% to 2.24%, wich was probably insufficient for
the development of an adequately calibrated model.

Similar good estimation results for soil texture using full spectra
were obtained for field BO71. Clay and sand were estimated from 5 fac-
tors PLSR, obtaining good RPD values, respectively of 2.1 and 2.2 and
RMSE values of 4.9 and 5.5. Silt showed intermediate performances,
with an RPD of 1.5 and RMSE of 2.8, whereas models developed for soil
organic matter had poor performances, with RPD values always below
1.4. The use of lab data with a reduced spectral range and resolution,
corresponding to CHRIS wavebands, had an impact on the performance
of the PLSR models developed. Nevertheless prediction ability was still
good, with a 12 components PLSR which explained 92% of the variance
for clay (RMSE=2.26, RPD=2.12), sand (RMSE=2.90, RPD=2.89) with
8 components explaining 95% of the variance and silt (RMSE=0.94,
RPD=4.50) with 8 components explaining 93% of the variance. SOM
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estimation was slightly worse than with full range spectra (RMSE=
1.10, RPD= (.41 with 8 components which account for 60% of the vari-
ance). For field B071 lab data resampled to CHRIS spectral range and
resolution allowed to obtain models with 6 factors with intermediate
prediction ability for clay (RPD=1.6 and RMSE=6.1) and sand
(RPD=1.6 and RMSE=7.6), whereas unsatisfactory results were
obtained for silt (RPD=1.2 and RMSE=3.5) and soil organic matter
(RPD<1.4). The use of real satellite data, employing spectra extracted
from the CHRIS image pixels, still allowed the estimation of clay for
field B064, though with a much poorer performance as compared to lab
spectra (Figure 1). The cumulative variance explained by the 6 PLSR
components was 67% and the RPD value indicated that the PLSR model
was just above the threshold for being considered to have any predic-
tion ability, whereas other soil properties were below this value. On the
other hand, for all other properties, the RPD values were below 1.4
(data not shown). For field B071, models with intermediate prediction
ability were obtained for clay and sand (Figure 2), though neither for
silt nor for SOM. The maps of properties estimated from PLSR having
RPD>1.4 showed a good match with the maps of kriged clay measure-
ments (Figure 3). On the basis of these results, clay and sand estimates
were retained, whereas silt was estimated as the complement to 100
and the mean soil organic matter was assumed to be constant for the
whole fields. These estimates, as well as the block kriging data
obtained from soil measurements, were employed for the delineation of
uniform soil texture zones using the MZA software (Fridgen et al.,
2004). For each case, 6 classes were obtained (Figure 4). It should be
noted that classes obtained from block kriging are assumed to repre-
sent the true soil types, whereas those from PLSR include uncertainties
and errors derived from the estimation procedure.

CropWat simulation revealed that when using the uniform irrigation
strategy (UNI), losses due to percolation were on the average 79 mm
for field BO71 and 15.4 mm for B071. For both fields, B064 and B071, the
total irrigation amounts applied throughout the season were not signfi-
cantly different among the three scenarios (Figures 5a and 6a).
However, differences in the irrigation lost by percolation where statisti-
cally significant among irrigation strategies, though largely differing
between fields. In the field B064, when the UNI strategy is adopted,
only 4 mm more irrigation water is lost on average as compared to VRI-
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Figure 1. Measured vs estimated clay values resulting from the
application of PLSR to the validation set for field B064 using
spectral reflectance data extracted from the CHRIS- PROBA
image.
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PLSRB (Figure 6b), though this difference is statistically significant for
a paired means t-test (P<0.01). In field B071 the adoption of the UNI
strategy leads on the average to the loss of 62 mm more than the VRI-
PLSR strategy (P<0.001) (Figure 5b). Yield reductions were on the ave-
rage 8.1% and 6.5%, respectively, when UNI and VRI-PLSR were applied
to field BO71 (Figure 5c¢). On field B064 yield reduction differences bet-
ween UNI and VRI-PLSR were larger, i.e. they amounted to 7.6% and
1.1%, respectively (Figure 6c).

Discussion

This work represents a first step towards the development of a quan-
titative and comparative assessment of the potential of hypespectral
satellite data in the context of soil mapping for precision agriculture
applications. Several efforts have been made in the last decades to use
satellite remote sensing for the estimation of soil properties (Ben-Dor
etal, 2009; Ge et al., 2011; Mulder et al., 2011), but until recently, most
attempts were performed using low spectral and/or spatial resolution
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Figure 2. Measured vs estimated clay (top) and sand (bottom) val-
ues resulting from the application of PLSR to the validation set
for field BO71 using spectral reflectance data extracted from the
CHRIS-PROBA image.
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Figure 3. Comparison of maps obtained from the application of
PLSR to CHRIS Proba validation data sets (left) and from appli-
cation of block kriging to soil sampling measurements (right). A)
field BO71 clay. B) field BO71 sand. C) field B064 clay.

Figure 4. Soil classes resulting from fuzzy c-means classification
carried out from block kriging soil data (left) and form PLSR
results (right). Top: field B064, bottom: field B0O71.
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data, allowing prevailingly qualitative determinations at the regional
scale. For more quantitative applications at the field scale, high spec-
tral and spatial resolution data are necessary (Ben-Dor et al., 2009;
Mulder et al., 2011). The availability of fuller spectral signatures from
hyperspectral sensors and the inclusion of short wave infrared (SWIR)
bands and the improved radiometric data quality, are expected to boost
estimation capabilities. Multivariate calibration and chemometric
methods, widely used for laboratory and field applications can be
employed with hyperspectral data for the estimation of several soil
properties (Viscarra Rossel, 2008; Ge et al., 2011).

Our results - obtained with data acquired in the lab - seem to suggest
that despite the reduced spectral range of the CHRIS instrument, which
cuts off features known to be significantly related to soil properties
such as clay and SOM (Ben-Dor et al., 2009), it is still possible to esti-
mate soil texture variables quantitatively. The use of CHRIS satellite
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data involves the inclusion of errors related to radiometric, geometric
and atmospheric effects as well as scaling issues related to pixel size
and kriging of ground truth soil properties. It is therefore not surpris-
ing that PLSR models developed using real CHRIS data have a much
poorer performance as compared to lab data with CHRIS spectral range
and resolution. Soil properties estimation is also possibly affected by
the confounding effect of soil moisture. Nevertheless, despite these
shortcomings, models with intermediate prediction ability could be
obtained in field B064 for clay and in field B071 for clay and sand.

The potential value of this information for precision agriculture
application was assessed through a very simple example, running sim-
ulations of different irrigation strategies. The model employed for such
an assessment, CropWat8.0, was chosen because of its extreme sem-
plicity, thus requiring a minimum number of input parameters. Much
more complex models could have been used allowing more sophisticat-
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Figure 5. Simulation results for the comparison of irrigation
strategies for field BO71. A) total seasonal irrigation. B) irrigation
losses due to percolation. C) reduction from the potential yield.

Figure 6. Simulation results for the comparison of irrigation
strategies for field BO64. A) total seasonal irrigation. B) irrigation
losses due to percolation. C) reduction from the potential yield.
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ed analyses, though their parametrisation could have posed more prob-
lems. In addition, it should be noted that some rather unrealistic
assumptions were adopted for this assessement. These included: i) the
uniformity of soil properties troughout the whole soil profile; ii) the
goodness of the pedotransfer functions used to derive soil parameters
from texture and SOM; iii) the goodness of the block kringing esti-
mates; iv) the goodness of the MZA clustering.

Despite these limitations, the results of this analysis indicate a
potential advantage in the management of irrigation by taking into
account soil spatial variability. Indeed, the tests carried out using
CropWat highligh the potential advantages resulting from the adoption
of a VRI strategy, even when the irrigation scheduling is based on
imperfect information such as that deriving from the CHRIS Proba
PLSR results. The use of a variable irrigation strategy did not lead to
the use of less water, but rather to a more efficient use, decreasing
losses due to excessive irrigation rates and reducing water stress lead-
ing to yield reduction. Quite interesting differences were found
between the two fields of the experiment. Differences in irrigation
losses between the UNI and the VRI-PLSR strategies were much high-
er for field B071 than for field B064. This can be explained by the larg-
er spatial variability in soil texture found in this field as compared to
B064. The coefficients of variation for clay, silt and sand were 12%, 11%
and 20% for field B064 and 21%, 29% and 21% for BO71, respectively.
This highlights the fact that the potential advantage of adopting a site-
specific irrigation strategy depends on the soil spatial variability of the
field. In conclusion, the value of the knowledge of field scale soil tex-
ture variability for precision agriculture applications suggests to con-
sider satellite hyperspectral data, which will be increasingly available
in the future, as an additional information source leading to a possible
synergic use with other information, such as that coming from geo-
electric and proximal soil sensing tools (Viscarra Rossell et al., 2011).
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