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Abstract

Hyperspectral (HS) data represents an extremely powerful means
for rapidly detecting crop stress and then aiding in the rational man-
agement of natural resources in agriculture. However, large volume of
data poses a challenge for data processing and extracting crucial infor-
mation. Multivariate statistical techniques can play a key role in the
analysis of HS data, as they may allow to both eliminate redundant
information and identify synthetic indices which maximize differ-
ences among levels of stress. In this paper we propose an integrated
approach, based on the combined use of Principal Component Analysis
(PCA) and Canonical Discriminant Analysis (CDA), to investigate HS
plant response and discriminate plant status. The approach was pre-
liminary evaluated on a data set collected on durum wheat plants
grown under different nitrogen (N) stress levels. Hyperspectral meas-
urements were performed at anthesis through a high resolution field
spectroradiometer, ASD FieldSpec HandHeld, covering the 325-1075
nm region. Reflectance data were first restricted to the interval 510-
1000 nm and then divided into five bands of the electromagnetic spec-
trum [green: 510-580 nm; yellow: 581-630 nm; red: 631-690 nm; red-

edge: 705-770 nm; near-infrared (NIR): 771-1000 nm]. PCA was
applied to each spectral interval. CDA was performed on the extracted
components to identify the factors maximizing the differences among
plants fertilised with increasing N rates. Within the intervals of green,
yellow and red only the first principal component (PC) had an eigen-
value greater than 1 and explained more than 95% of total variance;
within the ranges of red-edge and NIR, the first two PCs had an eigen-
value higher than 1. Two canonical variables explained cumulatively
more than 81% of total variance and the first was able to discriminate
wheat plants differently fertilised, as confirmed also by the significant
correlation with aboveground biomass and grain yield parameters. 
The combined approach proved to be effective, being able to synthe-

sise the redundant radiometric information in a reduced number of
indicators of plant nutritional status, which could be utilized to delin-
eate homogeneous within-field areas to be submitted to site-specific
fertilization.

Introduction

The rapid and precise detection of crop stress represents the basis
for a rationale and sustainable management of natural resources in
agriculture. The assessment of health status of agricultural crops or
natural vegetation resources is considered of crucial and equal impor-
tance for biodiversity preservation, farmland management and precise
agriculture running (Kancheva and Borisova, 2008). For characteris-
ing plant health status, the analysis of vegetation spectral response
may be of great support because stress, due to a variety of causes,
induces changes in leaf optical properties (Carter and Knapp, 2001).
Spectral reflectance measures are able to provide information on sev-
eral biophysical and biochemical parameters, such as canopy struc-
ture, quantity of biomass, chlorophyll concentration, water content and
overall vegetative health (Goetz, 2009).
In the last years, the availability of hyperspectral sensors has

widened the potential for plant status characterization. Hyperspectral
(HS) narrowbands provide, in comparison to broadbands, a significant
improvement in information content and detection accuracy for dis-
criminating land cover types, identifying small differences in green
vegetation cover and crop moisture (Jain et al., 2007). In addition, they
have proven to be of great utility in detecting plant stress (Carter and
Knapp, 2001; Ray et al., 2010).
Although HS data furnish a wealth of detailed information, large vol-

ume of data and redundancy (Thenkabail et al., 2002; Broge and
Leblanc, 2000) pose a challenge for data processing and for the extrac-
tion of crucial information embedded (Delalieux et al., 2007;
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Hogervorst and Schwering, 2011; Zhang et al., 2011). Specifically, in
the processing of HS data researchers face two, apparently contrasting,
needs: on one hand to comprehensively analyse the whole vegetation
spectral response, in order to not lose information, and, on the other
one, to individuate synthetic indices (optimum set of narrowbands
and/or new HS vegetation indices, etc.) able to best characterize crop
status and different levels of stress (Thenkabail, 2002; Thenkabail et
al., 2004; Jain et al., 2007).
Many approaches have been so far proposed for discriminating crops

under different conditions, such as: use of reflectance from individual
narrowbands; computation of difference and ratio indices (structural
indices, chlorophyll indices, red edge indices); calculation of combined
indices, which compare an index that has a relatively greater sensitiv-
ity to chlorophyll content with one that has greater sensitivity to LAI
and canopy cover (e.g. CCCI, TCARI/OSAVI, MCARI/OSAVI,
MCARI/MTVI2) (Eitel et al., 2008; Li et al., 2010; Basso et al., 2011);
computation of derivatives of reflectance spectra; use of multivariate
statistical analysis techniques (Thenkabail et al., 2004; Jain et al.,
2007; Ray et al., 2010). Among them, the last methods can play a cru-
cial role in analysing HS data set. Indeed, they may allow both to elim-
inate the redundant information, reducing the data set to a limited
number of components, and to identify synthetic indices which maxi-
mize differences among levels of stress (Broge and Leblanc, 2000). 
Principal Component Analysis (PCA) and Discriminant Analysis

(DA) are two major techniques for dimensionality reduction in HS data
and crop characterization. PCA aims to derive a new set of orthogonal
factors which explain the pattern of correlations and capture most of
the variance of the original data set. In this way the numerous initial
variables are reduced to a few new explicative components. DA is
aimed to identify the variables within the data set which maximize
between group variability while minimizing within group variability.
Specifically, Canonical Discriminant Analysis (CDA) is a dimension-
reduction technique which derives canonical variables, i.e. linear com-
binations of the original variables, that summarize between-class vari-
ation in much the same way principal components summarize total
variation (SAS, 1999). The methods may then provide complementary
information.
In previous research, discriminant analysis furnished positive

results, being able to differentiate fertilizer and irrigation manage-
ments and identify areas of the canopy under eco-physiological stress;
the method has been also successfully used at both leaf and canopy
level (Filella et al., 1995; Ray et al., 2010). Apan et al. (2004) applied
canonical discriminant analysis with a stepwise selection method for
discriminating sugarcane disease. Schmidt and Skidmore (2003) also
found canonical variate analysis to significantly increase classification
accuracy when applied to HS data. The authors stated that it should be
considered as the preferred data reduction technique in the analysis of
such data set.
Thenkabail et al. (2004) adopted a comprehensive analysis to detect

optimal wavebands that best described vegetation characteristics, of
several spontaneous and cultivated plant species, using: i) principal
component analysis (PCA); ii) lambda-lambda R2models (LL R2M); iii)
stepwise discriminant analysis (SDA); iv) derivative greenness vegeta-
tion indices (DGVI). A similar approach (lambda-lambda plots, PCA and
SDA) was also adopted by Jain et al. (2007) and Ray et al. (2010) to
characterise potato spectral response to several stressors [nitrogen
(N) and water deficiency; diseases]. The last authors initially per-
formed a reduction of data dimensionality, averaging the narrowbands
of the range 395-1075 nm over 10 nm and thus obtaining 69 variables;
then, after applying the statistical methods separately, pooled together
the wavebands that provided the best results in the three methods and
quantified their frequency of occurrence. As concerns N stress, the
wavelengths most frequently associated with plant response to the
examined N levels were 560, 650, 730 and 760 nm (Ray et al., 2010).

From the previous considerations, it emerges the importance of
analysing the whole HS data set in order to clearly interpret plant
response to stress, as well as the complementary role of PCA and CDA
as a data dimensionality reduction method and a data classification
technique, respectively. For these reasons, we propose an integrated
approach, based on the combined use of PCA and CDA, to investigate
the vegetation spectral response and individuate synthetic indices that
best discriminate different N stress levels and could be utilized to
delineate homogeneous within-field areas. The approach was prelimi-
nary evaluated on a data set collected on durum wheat plants grown
under rainfed conditions in southern Italy.

Materials and methods

Site description and hyperspectral data collection
Hyperspectral data were collected within a field trial started in the

autumn of 2009 at the Cereal Research Centre of the Italian
Agricultural Research Council (CRA-CER, Foggia, 41° 27’ N, 15° 36’ E,
96 asl, Apulia region, southern Italy).
The area is characterized by climatic conditions typical of the

Mediterranean environment, with a dry season between May and
September and a cold and rainy season from October-November to
March-April (Troccoli et al., 2007). The soil, typical of the Apulian
Tavoliere, is clay-loam of alluvial origin classified as chromic calcixer-
ert according to USDA Soil Taxonomy, and is characterized by a high
average chemical fertility, as indicated by the soil organic matter con-
tent (27.4 g kg–1). Mean values of the main chemical and physical soil
properties are reported in Table 1.
The experiment was aimed to compare the effect of ten N rates, cor-

responding to the supply of N amounts ranging between 0 and 180 kg
ha–1 (0, 60, 80, 90, 100, 110, 120, 140, 160, 180 kg N ha–1), on durum
wheat (Triticum durum Desf., cv PR22D89) grown continuously. The
experimental design consisted of ten unreplicated plots (10 m ¥ 80 m
size), each treated with a different N dose.
Wheat was sown at the rate of 350 seeds m–2 on 24 December 2010

and harvested at the end of July 2011. Nitrogen was supplied using
ammonium nitrate, which was split in two applications, at the end of
tillering (2/3, on 22 March 2011) and at booting (1/3, on 29 April 2011)
stages. Other cultivation practices were typical of the growing area.
For the collection of spectral signatures, inside each plot (N treat-

ment), two sub-plots were selected (13 m ¥ 10 m size), within which
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Table 1. Main soil physical and chemical properties of the exper-
imental site.

Properties Units Average values

Physical
Sand g kg–1 238
Silt g kg–1 459
Clay g kg–1 303
Texture (USDA) Clay-loam

Chemical
SOM g kg–1 27.4
TN g kg–1 1.11
P mg kg–1 23.8
CEC meq 100 g–1 22.4
CaCO3 g 100 g–1 11.4
pH 8.8
EC ds m–1 0.2

SOM, soil organic matter (Walkley and Black); TN, total nitrogen (Kjeldahl); P, extractable phosphorus
(Olsen); CEC, BaCl2 cation exchange capacity; pH in 1:2.5 soil/water extracts; EC in 1:2 soil/water
extracts.
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the spectral readings were carried out for a total of forty measures (10
plots ¥ 2 sub-plots ¥ 2 readings per sub-plot). Reflectance data were
gathered on 24 May 2011 with a high resolution hyperspectral radiome-
ter, ASD FieldSpec HandHeld (ASD Inc., Boulder, CO, USA), covering
the wavelength range from 325 nm to 1075 nm. The instrument, which
relies on a 512-element photodiode array, acquires hyperspectral data
with a spectral resolution (Full Width at Half Maximum - FWHM) of 3.5
nm at 700 nm and a sampling interval (spacing between sample points
in the measured spectrum) of 1.5 nm. The FOV (field of view) of the
bare fiber-optic probe is 25°. The reflectance of the target is calculated
with the calibration measurements of dark current and a white refer-
ence panel with known reflectance properties. The sensor was held
about 40 cm above the canopy in nadir orientation, and this allowed a
spot size of approximately 250 cm2. The measurements were carried
out under clear and cloudless sky conditions between 11:00 and 14:00
at local time. Examples of average experimental reflectance signatures
of wheat canopy are reported in Figure 1. On the same sampling date,
aboveground biomass was measured in each sub-plot replicate on 1 m
by 0.17 m areas. Fresh and dry biomass of the collected samples were
quantified.
At harvesting, grain yield was determined by harvesting ten sam-

pling areas of 21.08 m2 (15.5 m ¥ 1.36 m size) per plot using a plot com-
bine harvester. Yield components and quality parameters (hectoliter
weight, grain protein and gluten content) were determined on collect-
ed samples. Two sampling areas fell within each previously selected
sub-plot replicate; thus, the corresponding yield data were averaged to
be used in the following correlation analysis. 

Data analysis
Collected reflectance data were initially restricted to 600 spectral

wavelengths from 400 to 1000 nm, as they were considered noise-free.
In addition, in this study it was decided to concentrate the attention on
the 510-1000 nm range because of both the particular importance and
suitability of this range for crop stress detection (Carter and Knapp,
2001; Ray et al., 2010) and the strong and stable relationship between
red and blue reflectances (Jiang et al., 2008).
The selected hyperspectral data (510-1000 nm) were afterwards

divided into five bands of the electromagnetic spectrum, chosen on the
basis of their capabilities to highlight specific vegetation features
(Carter, 1993; Sims et al., 2002): i) Green band (510-580 nm, G) is able
to focus on the peak reflectance of healthy vegetation; ii) Yellow band
(581-630 nm, Y) detects yellowness, i.e. the degree of chlorosis and
senescence of vegetation; iii) Red band (631-690 nm, R) is better
focused on the absorption of red light by chlorophyll in healthy plants;
iv) Red-Edge band (705-770 nm, RE) is very effective in measuring
plant health as strongly related to the plant response to several stres-
sors (Carter and Knapp, 2001); v) near-infrared band (771-1000 nm,
NIR) is strongly correlated to canopy cover and leaf area index. 
Hyperspectral data were then processed through Principal

Component Analysis (PCA) in order to remove the redundant informa-
tion given by neighbouring bands, by linearly transforming the original
set of reflectances into a new set of orthogonal factors. PCA was applied
to the correlation matrix and performed separately for each spectral
interval. Within each interval only the principal components with
eigenvalue greater than 1 (Kaiser criterion) were retained for further
analysis. The component loadings were used to interpret the meaning
of the new variables.
Canonical Discriminant Analysis (CDA) was applied to the retained

PCs for investigating the radiometric differences among N treatments
and identifying some synthetic indices able to discriminate treatments
effectively. Discriminant Analysis (DA) uses multiple quantitative
attributes to discriminate a single classification variable. A discrimi-
nant model, also known as classification criterion, is determined by a
measure of generalised squared distance (SAS, 1999). The classifica-

tion criterion may be based on either the individual within-group
covariance matrices or the pooled covariance matrix, depending on the
homogeneity of the within-group matrices. To verify the homogeneity
of the within-group covariance matrices, the Bartlett’s modification of
the likelihood ratio test (Morrison, 1976; Anderson, 1984) was used.
CDA was performed to extract linear combinations of the quantitative

variables (in our case, the principal components) that best revealed the
differences between the groups (N treatments). The first extracted
canonical variables (or components) have the highest possible multiple
correlation with the groups. The standardised canonical coefficients
indicate the partial contribution of each variable to the canonical compo-
nent and these structure loadings are commonly used to interpret the
meaning of the canonical variable. A scatter plot of the sample data on
the plane of the first two canonical variables was computed to visually
evaluate the efficacy of CDA in segregating different N fertilizer treat-
ments (stress levels). In order to evaluate the agronomic potential of the
extracted canonical variables, a correlation analysis was computed
between canonical variables and biophysical parameters, specifically
fresh and dry aboveground biomass and grain yield.
Finally, being the red edge region very important in characterizing

plant response to stress, a red edge position index (REIP, defined by
Guyot and Baret, 1988) was calculated using a combination of four
wavebands that approximate the red edge inflection point. REIP index
is based on a linear four-point interpolation of the wavelengths 670,
700, 740 and 780 nm (Sticksel et al., 2004; Li et al., 2009), and is com-
puted using the following equation:

REIP = 700 + 40 [R670 + R780)/2 – R700]

(R740 – R700)

PCA and CDA were implemented using PRINCOMP and DISCRIM
procedures of SAS/STAT software package (SAS, 2010).
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Figure 1. Examples of average experimental reflectance signatures
of wheat canopy.
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Results and discussion

Weather conditions and yield response
The monthly minimum and maximum air temperatures and the

rainfall recorded across the wheat growing cycle, in comparison with
the long-term trends (1955-2009), are reported in Figure 2. The 2010-
2011 autumn-spring period showed higher rainfall than the 55-year
averages (627.4 mm vs 436.2 mm). Particularly abundant rainfalls were
recorded in the October-December period (+123.6 mm than long-term
values), with +104.2 mm in October and +45.8 mm in November. This
allowed the constitution of a significant water reserve in the soil for the
following wheat growing cycle. Consistent rainfall events were also
recorded in January (+14.6 mm), March (+43.9 mm) and in April-May
(+28.5 mm). Slightly lower rainfall (-13.6 mm) was finally recorded in
June. As concerns the thermal regime, the 2010-2011 growing season
was characterized by a cold winter and a fresh spring. Monthly air tem-
peratures were indeed lower than long-term averages, with minimum
air temperatures of 1.65 °C lower in the December-February period and
maximum temperatures lower in March and May (-1.6 and -1.9°C).
Grain yield was strongly affected by different N supply. Average grain

yield was 4.28 t ha–1 and ranged from 2.34 (0 kg N ha–1) to 5.62 t ha–1 (120
kg N ha–1). As a consequence of the high average soil fertility, highest
yields were recorded under intermediate N rates, whereas a yield decre-
ment was observed in correspondence of the highest N level (Table 2).
Protein content showed a linear increase up to the rate of 100 kg N ha–1;
further increases in N supply did not result in higher values. Hectoliter
weight and seeds weight were less affected by varying N supply.

Hyperspectral plant response
According to the Kaiser criterion and to the percentage of variance

explained, only the first principal component (PC) was retained within
the spectral intervals of green, yellow and red, as it had an eigenvalue
greater than 1 (Table 3) and explained more than 95% of the total vari-
ance (PC_G1, PC_Y1, PC_R1). These results point out the high corre-
lation existing between neighbouring wavelengths and underline the
importance of adopting multivariate statistical techniques in order to
reduce data dimensionality and synthesise redundant information.
Within the ranges of red-edge (RE) and NIR, the first two PCs

showed an eigenvalue greater than 1. In the NIR region, the first PC
(PC_NIR1) was able to synthesize the major part of the total variance
and the general behaviour of this spectral interval, as its component
loadings were all equally weighted. The second component (PC_NIR2),
which however explained only a low percentage of the total variance,

was instead more related to the wavelengths of the 952-970 nm range.
Within the RE interval, the first two components (PC_RE1, PC_RE2)
explained respectively 72.8% and 27% of the total variance. The first
component was more correlated to the wavelengths in the central part
of the spectral interval (730-745 nm). The second component was
instead characterised by positive loadings up to 735 nm while negative
up to the end of the interval. In particular, it was observed a positive
high correlation to the wavelengths of the range 705-717 nm, whereas
a negative correlation to those of the range 754-770 nm. The existence
of two significant components in the RE interval can be attributed to
the wide variability of plant radiometric response in this spectral
region.
The characteristic red edge reflectance pattern of vegetation has

been deeply investigated by many researches, all of which reported that
the observed blue-shift and red-shift of the red edge inflection point
(REIP) can be related to plant growth conditions (Broge and Leblanc,
2000). REIP can be located at around 720 nm on average; shifts toward
shorter wavelengths (blue-shift) can be associated with a decrease in
green vegetation density; whereas shifts toward longer wavelengths
(red-shift) with an increase in green plant material (Broge and
Leblanc, 2000; Carter and Knapp, 2001). The position of REIP is there-

Article

Table 2. Quantitative and qualitative yield response of the 10 compared nitrogen treatments.

Treatments Grain yield Protein Gluten Hectoliter weight 1000 seeds weight 
(kg N ha–1) (t ha–1) (% DM) (% DM) (kg hL–1) (g)

0 2.34±0.15 9.90±0.07 5.88±0.06 80.83±0.33 45.93±0.38
60 3.73±0.14 12.53±0.29 8.85±0.35 80.45±1.14 45.60±2.38
80 3.07±0.10 13.98±0.39 10.15±0.33 78.68±1.23 43.35±1.04
90 4.96±0.05 13.93±0.29 10.08±0.31 81.33±0.36 46.78±1.44
100 4.89±0.08 15.05±0.24 11.43±0.32 79.95±0.80 46.28±0.73
110 4.23±0.28 14.88±0.37 11.05±0.47 79.28±0.93 45.13±1.23
120 5.62±0.25 13.65±0.33 9.60±0.30 81.93±0.90 50.00±1.50
140 5.05±0.26 14.98±0.44 10.98±0.44 79.55±1.92 46.55±2.06
160 4.95±0.09 14.83±0.02 10.90±0.11 79.85±0.96 45.93±1.98
180 3.94±0.32 15.35±0.12 11.43±0.11 77.33±0.96 45.33±1.42
N, nitrogen; DM, dry matter. Data are expressed as mean ± standard error.

Figure 2. Monthly mean minimum and maximum air tempera-
ture (Tmin and Tmax) and total rainfall recorded over the experi-
mental period in comparison with long-term trends (1955-2009).Non
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fore a strong indicator of chlorophyll content: the higher the number,
the greater the amount.
Although explaining only 27% of total variance, the second RE com-

ponent showed a close indirect association with the REIP index 
(r=-0.954, P<0.0001), computed according to Guyot and Baret (1988).
The REIP index increased passing from the not fertilised treatment
(719.6 nm) to the fertilised plants (i.e. 725.9 nm for the treatment
which received 100 kg N ha–1, Table 4). Although this index is derived
by a simplified formula, its efficacy has been pointed out in other stud-
ies. Sticksel et al. (2004), among several hyperspectral indices,
observed that REIP together with IRI (InfraRed Index) were the most
sensitive to the N induced heterogeneities in winter wheat crops. In
addition, Li et al. (2009), comparing different red edge vegetation
indices for estimating winter wheat N status, noticed that red-edge
position indices performed better than normalised and simple ratio red
edge indices. Further statistical analysis was carried out on the seven
new variables extracted by means of Principal Component Analysis
(PC_G1, PC_Y1, PC_R1, PC_RE1, PC_RE2, PC_NIR1, PC_NIR2). The
bands more affecting wheat spectral response were the green, yellow,
red, the second component of RE and the first component of NIR (Table
5). This proved that reflectance in these intervals is able to discrimi-
nate crop nutritional status at anthesis and that canopy optical proper-
ties are highly affected by nutritional stress (Carter and Knapp, 2001).
Specifically, passing from the unfertilised control to the fertilised
plants, the recorded radiometric reflectances showed a trend to
decrease in the visible region, whereas to increase in the NIR region.
These results were in agreement with findings by Zhu et al. (2006),
which analysed the canopy reflectance response spectra to N rates on
wheat. The authors observed that the spectral reflectance was nega-
tively correlated to N rate in the visible wavebands (460-710 nm) and
near infrared (NIR) long wavebands (1480-1650 nm), whereas in the
NIR short wavebands (760-1220 nm) the reflectance tended to increase
with increasing N rate (Zhu et al., 2006). Liew et al. (2008) also report-
ed that many nutrient deficiencies induced a decrease in chlorophyll
content, a concomitant increase in reflectance in the visible range
(400-700 nm) and a blue-shift in the red edge inflection point. The
Bartlett’s modification of the likelihood ratio test, carried out to verify
the homogeneity of the within-group covariance matrices, was not sig-
nificant at a probability level P<0.05; therefore, the discriminant analy-
sis was carried out on the pooled covariance matrix. Two canonical
variables showed an eigenvalue higher than one, explaining cumula-
tively more than 81% of the total variance (Tables 6 and 7). The per-
formance of the discriminant function in classifying future observa-
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Table 3. Eigenvalue and percentage of variance explained by the first three principal components of each examined spectral interval.

Spectral interval Spectral range (nm) n of variables PCs Eigenvalue % of variance explained

Green 510-580 71 PC_G1 70.65 99.51
PC_G2 0.27 0.38
PC_G3 0.06 0.08

Yellow 581-630 50 PC_Y1 49.89 99.79
PC_Y2 0.06 0.12
PC_Y3 0.04 0.07

Red 631-690 60 PC_R1 59.89 99.82
PC_R2 0.09 0.15
PC_R3 0.01 0.02

Red-Edge 705-770 66 PC_RE1 48.03 72.78
PC_RE2 17.82 27.00
PC_RE3 0.09 0.13

NIR 771-1000 230 PC_NIR1 226.43 98.45
PC_NIR2 2.06 0.89
PC_NIR3 0.61 0.27

PCs, principal components; NIR, near-infrared; the selected PCs within each interval are indicated in italics.

Table 4. Average values  of the Red Edge Inflection Point index,
computed according to Guyot and Baret (1988), for the 10 com-
pared nitrogen treatments. 

Treatments(kg N ha–1) REIP (nm)

0 719.6  (±0.35) 
60 721.9  (±0.19)
80 723.0  (±0.64)
90 724.4  (±0.46)
100 725.9  (±0.36)
110 723.7  (±0.49)
120 724.4  (±0.51)
140 724.7  (±0.65)
160 722.1  (±0.72)
180 723.7  (±0.44)
REIP, Red Edge Inflection Point index; N, nitrogen. Data are expressed as mean ± standard error.

Table 6. Eigenvalue, percentage of variance explained and signif-
icance of the seven canonical variables extracted.

Canonical Eigenvalue % of Likelihood Pr>F
variables variance ratio

explained

Can 1 5.15 59.6 0.0166 <0.0001
Can 2 1.88 21.7 0.1021 0.0257
Can 3 0.99 11.5 0.2939 0.3717
Can 4 0.45 5.2 0.5876 0.8822
Can 5 0.13 1.5 0.8518 0.9931
Can 6 0.03 0.3 0.9635 0.9972
Can 7 0.01 0.1 0.9899 0.9585

Table 5. R2 performed on the extracted principal components.

R2

PC_G1 0.7366
PC_Y1 0.7586
PC_R1 0.7399
PC_RE1 0.3192
PC_RE2 0.7477
PC_NIR1 0.4071
PC_NIR2 0.1709
Average R2 0.5543
PC, principal component.
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tions was assessed through the analysis of the confusion matrix. In
table 8, the single treatment classification accuracy, expressed as pro-
portion of correctly classified observations in each group, and the over-
all accuracy are reported. Unfertilised plants were clearly classified and
no confusion was observed with other treatments. Treatments ranging
from 60 to 110 kg N ha–1 showed also a high accuracy. Lower treatment
accuracy was observed for higher N levels with particular regard to the
rate of 120 kg N ha–1. The overall discrimination may be considered sat-
isfactory since the overall accuracy is 70%; this indicates that about 3/4
of the data was correctly classified. 
The observation of the standardised canonical coefficients (Table 7)

showed that on the first canonical variable, which accounted for 59.6%
of total variance, the yellow component and the first of RE weighted
more and positively and were indirectly correlated to the green, the first
NIR and the second RE components. On the second canonical variable,
which accounted for 21.7% of the total variance, both red edge compo-
nents weighted more and positively and were negatively correlated
with yellow, red and NIR1 components (Table 7). From the observation
of the first canonical variable coefficients, it emerged the role of the
green-yellow and far-red (red-edge) intervals, as well as of the NIR
region (that at canopy level is highly related to canopy cover and LAI),
in characterising the vegetation spectral response. Carter and Knapp
(2001) observed that the major differences in optical plant response to
stress occur in the far-red and green-yellow regions of the spectrum.
Reflectance differences between stressed and healthy leaves in the
400-500 and 670-680 nm tend instead to be low. The reason is that, in
the 670-680 nm range, the absorption may saturate due to the strong
chlorophyll absorptivity and then, only with the lost of large amounts of
chlorophyll from the leaves, significant optical differences occur
(Carter and Knapp, 2001). To evaluate the discriminating capability of
the extracted canonical variables, the scatter plot of the sample data on
the plane of the first two canonical variables (Figure 3) was inspected.
The plot showed that the first canonical component was able to clearly
distinguish the unfertilised from all the fertilised plants. Moreover,
among the fertilised treatments, the plants receiving 100 kg N ha–1

(which is the N dose commonly used by the farmers of the study area)
were differently classified from those which received the lowest (60
and 80 kg N ha–1) and the highest (160 and 180 kg N ha–1) N rates
(Figure 3). The other N supplies resulted in an intermediate behaviour
and appeared close to the 100 kg N ha–1 treatment. The agronomic
potential of the first canonical variable extracted was finally evaluated
through a correlation analysis with biophysical (plant biomass) and
quantitative and qualitative yield parameters. The analysis highlighted
the high degree of association between the canonical variable and the
examined plant response parameters with particular regard to grain
yield and protein content (Table 9). This finding was indicative of the
ability of this canonical component to characterise agronomic plant
response to N treatments.
The results of this preliminary study pointed out that canonical vari-

ables may represent synthetic indices able to characterize main spec-
tral features of plant response to N supply and plant nutritional status.
Therefore these indices could play a key role in delineating homoge-
neous within-field areas to be submitted to site-specific management.

Conclusions

The analysis of the spectral response of vegetation through remote
and proximal sensing could be a valid means to rapidly investigate and
define the overall plant health and nutritional status. The development
of efficient procedures for data analysis is still one of the most essen-
tial issues and its importance is directly related to the ever-increasing
amount of data provided by numerous sensors, such as hyperspectral
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Table 7. The total-sample Standardised Canonical Coefficients of
the first two canonical variables.

Can 1 Can 2

PC_G1 -19.3647 1.6752
PC_Y1 23.3357 -4.4118
PC_R1 -0.7744 -3.9016
PC_RE1 16.1896 3.1499
PC_RE2 -11.0119 4.9738
PC_NIR1 -16.9738 -3.2185
PC_NIR2 1.6229 0.6919
Eigenvalue 5.15 1.88
% variance explained 59.6 21.7
PC, principal component.

Table 8. Treatment accuracy and overall accuracy from the error
matrix.

Treatment Overall 
accuracy accuracy

0 60 80 90 100 110 120 140 160 180

1.00 1.00 0.75 0.75 0.75 1.00 0.25 0.50 0.50 0.50 0.70

Table 9. Correlation matrix of the first canonical variable, bio-
physical (dry and fresh plant biomass) and yield parameters
(grain yield, grain protein and gluten content). 

Can 1 Grain Grain Gluten Fresh 
yield protein biomass

Grain yield -0.736*** -
Grain protein -0.805*** 0.591** -
Gluten -0.816*** 0.573** 0.995*** -
Fresh biomass -0.582** 0.659** 0.680** 0.671** -
Dry biomass -0.556* 0.644** 0.652** 0.646** 0.991***
***P<0.001; **P<0.01; *P<0.05.

Figure 3. Scatterplot of the sample data on the plane of the first
two canonical variables. N rates supplied (kg ha–1) are reported
near to the sample points.
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instruments (Kancheva and Borisova, 2008). Multivariate statistical
techniques may play a crucial role in the analysis of hyperspectral data
sets. The combined approach adopted in this study, based on the use of
PCA and CDA, proved to be effective, being able to summarize the
redundant radiometric information in a reduced number of indicators
of plant nutritional status, which could be utilized to delineate homo-
geneous within-field areas to be submitted to site-specific fertilization.
In particular, the first canonical variable extracted discriminated most
differently N fertilised durum wheat plants and was significantly corre-
lated to biophysical and yield parameters. Further research is needed to
evaluate the efficacy of this approach across the crop cycle, i.e. at dif-
ferent phenological stages of wheat and on different crops and to com-
pare the results to those obtained with other methodological approach-
es. Since the correlation between individual bands and biophysical
parameters varies during the crop cycle, the use of only one band may
not be able to discriminate the different stress levels at any phenologi-
cal stage, whereas a weighted combination of all the monitored bands
may lead to a better discrimination of differently fertilised areas. No
single best approach is so far available to define optimal indices or
band sub-sets which provide the best estimates of vegetation charac-
teristics (Thenkabail et al., 2004). Different approaches may be fol-
lowed, with different combination of statistical techniques, but the
adoption of multivariate methods represents undoubtedly one of the
most promising way.
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