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Abstract
Agro-ecozoning is a delineation of landscape into relatively homogeneous regions of expected similar crop perfor-
mance. Past classifications have been subjective, crop specific and did not take into account spatial correlation. A
quantitative approach is proposed to unambiguously locate, characterise and visualise agro-ecozones and their
boundaries which can be allied to different environmental conditions. In this study the environmental parameters,
including climatic and soil characteristics, hypothesized to be generally relevant to many crops in Capitanata-Fog-
gia (South Italy), were used. Cokriged environmental estimates at 500 m scale were used in a clustering algorithm
based on non-parametric multivariate density estimation. A 3D map of density estimation and red-green-blue colour
triplet were used for visualisation of agro-ecozones as a unique combination of environmental factors.
The proposed approach produced the delineation of the study area in five compact classes in the space of envi-
ronmental attributes that were also contiguous in geographic space. The resulting agro-ecozones may provide a
framework for useful application in land use decision making.

Key-words: agro-ecozone (AEZ), management zone, geostatistics, fuzzy c-means classification.

1. Introduction

The delineation of landscape in regions where
crop performance is expected relatively homo-
geneous may have potential benefits for im-
proved agricultural production and natural re-
source conservation. Agro-ecozones (AEZs) are
geographic units containing similar land re-
source potentials and limitations relevant to
agriculture (Williams et al., 2008). In the past
AEZ delineation has been crop-specific (FAO,
1996; Caldiz et al., 2001; Swinton et al., 2001),
using detailed information on crop require-
ments and human expertise in a qualitative,
weight-of-evidence approach (McMahon et al.,
2001). However, when regionalisation mostly
depends on observer interpretations and on his
personal experience, it is not suitable for statis-
tical extrapolation (Metzger et al., 2005), be-
cause science requires transferability and re-
peatability of the results and then the use of

more objective, quantitative models. However,
quantitative regionalisation techniques will not
be perfectly objective, because they require ex-
pertise in the choice of data layers to include
and in the interpretation of the resulting agro-
ecozones. Nevertheless, the definition of a quan-
titative approach for regionalisation is a desir-
able goal, because it allows, among the other
things, to custom the input variables to specific
uses and has broad application to numerous
crops, including potential alternative crops.
Moreover, the variable nature of the boundaries
between agro-ecozones may add further ambi-
guity to boundary location and meaning. Actu-
ally, boundaries between agro-ecozones can be
sharp or more commonly gradual, which causes
edges to be indistinct and makes difficult to lo-
cate a line of demarcation between distinct re-
gions, or can change their characteristics along
their length. Approaches to distinguish these
different types of border have been used in the
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past, including fuzzy set theory (Leung, 1987;
Lark, 1998), wavelet analysis (Csillag and Ka-
bos, 2002) and multivariate geographic cluster-
ing (Hargrove and Hoffmann, 1999), but no sin-
gle method has been widely adopted. Locating
agro-ecozone boundaries is a multivariate
process, which requires to analyse large geo-
graphical data sets for the different environ-
mental conditions. Growth in computing power
and increased availability of spatial environ-
mental data in geographic information systems
(GIS) have made agro-ecozoning feasible.

However, though GISs allow the use of spa-
tial data in a digital environment and integra-
tion of data from different sources, and separate
scales and have several application in agricul-
tural research, their use is no guarantee of ob-
jectivity if a quantitative analytical approach is
not defined to delineate AEZs.

Statistical clustering is a well known tech-
nique which groups similar individuals into dis-
tinct classes in attribute space, called clusters
(Jensen, 1996; Irvin et al., 1997). Several inves-
tigators have used multivariate clustering for
delineating homogeneous climatic and physio-
graphic regions (Host et al., 1996), uniform re-
gions of geology (Harff et al., 1990), regions of
uniform crop (Lark, 1998) and regions of con-
stant fertility (Carter et al., 1997). At present
several algorithm options exist but no unified
theory is widely accepted.

Most current clustering methods, based on
least-squares criterion (Sarle, 1982), are biased,
because they tend to fit globular clusters of
equal size in data space, characterised by a si-
milar upper limit on within-group variance and
a similar maximum radius around each centroid.
Therefore, the uniform heterogeneity across
clusters prevents the creation of regions with
highly elongated or irregular shapes and vastly
changeable within-unit variance. Conversely,
the methods based on nonparametric density
estimation are the ones with the least bias (Sil-
verman, 1986; Scott, 1992) and according to
such an approach a cluster is defined as a re-
gion surrounding a local maximum of probabil-
ity density function or a connected set of local
maxima.

Furthermore, existing traditional clustering
techniques do not account for the spatial cor-
relation between observations and take little ac-
count of gradual change, either from one class

to another or within any one class, because it is
assumed that the variability of most properties
is less within clusters than between clusters.
However, where high variable levels of man-
agement are applied, within-unit variation may
exceed that between units. In such conditions it
is very difficult to unambiguously associate the
boundaries of the delineated clusters with im-
portant changes of landscape. Geostatistics uses
a completely different paradigm, because it
treats multivariate indices of spatial variation as
continua in a joint attribute and geographical
space. In the univariate form each attribute is
considered as a random regionalized variable,
varying continuously and its gradual geograph-
ical variation is described by a covariance func-
tion. In order to obtain geographically continu-
ous regions, proximal information of the cells
then has to be directly used in the geographical
classification of agro-ecozones.

Finally, density estimation is now recognized
as a powerful graphical tool for detecting and
summarizing the multivariate structure of com-
plex data. As each cluster’s centroid, obtained
by averaging on all the point in the cluster, is
assumed as representative of the cluster region,
the Euclidean distance from each cell to its cen-
troid measures its deviation from the cluster
norm. Therefore, cells close to their centroids
are more representative of the cluster than cells
for from their centroids in environmental space
(Belbin, 1993). In a 3D representation of prob-
ability function, hypothetical clusters appear as
a series of peaks with border regions tracing
along the lowest geographic locations. Visua-
lization then is a key aspect of effective multi-
variate analysis but requires a proper array of
both statistical and graphical tools.

The objective of this paper is to propose a
multivariate statistical clustering approach to
delineate and visualise agro-ecozones. The pro-
posed approach is a combination of geostatisti-
cal techniques with a non-parametric density al-
gorithm and a red-green-blue colour triplet.

2. Materials and methods

2.1 Study area

The study area extends for about 1.979 km2 and
is located in “Capitanata” plain (Apulia region,
Southern Italy). “Capitanata” plain is the north-
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ern sector of the Apennines foredeep, a geo-
logical structure delimited by the Apennines
Chain West and by Gargano Promontory East.
The plain is mainly constituted by continental
and fluvial sediments and some terraced marine
deposits of Pliocene and Pleistocene ages. The
area is characterized by a flat morphology, with
topographic elevation values ranging between
50 m and 200 m a.s.l. On the west side of the
plain, the elevation increases gently toward the
Apennine piedmont region, where the mor-
phology becomes hilly and the region is crossed
by not very deep river valleys. Rivers are char-
acterized by a torrential regime and cross the
study area forming meanders and braided land-
scapes.

According to the Atlas of the Soil Regions
of Italy (Centro Nazionale di Cartografia Pedo-
logica, 2002) the main pedological region in
“Capitanata” is the 62.1 type, with a typical
Mediterranean subtropical climate, character-
ized by an average annual air temperature be-
tween 12 and 17 °C and an average annual pre-
cipitation between 400 and 800 mm distributed
mainly during the autumn period (October-
November).

The geological and geomorphological set-
tings of the region cause the variability of the
pedological and micro-climate conditions, de-
termining the presence of different soil sub-re-
gions. Different soil sub-regions are delineated
in the study area related to the local morpho-
logical and hydraulic conditions (Apulia Re-
gion, 2001): higher Capitanata, lower Capitana-
ta, southern Capitanata, Fortore Valley and mid-
dle-west Gargano.

The study area is characterized by different
soil types such as Vertisols, Calcisols, Kas-
tanozems-Calcisols and Vertisols-Cambisols
(Apulia Region, 2001).

2.2 Environmental dataset

We defined a quite flexible approach in regio-
nalisation of land resources by using the envi-
ronmental variables hypothesized to be poten-
tially limiting growth and production of a wide
variety of crops. The choice of variables (cli-
matic, topographic and edaphic) was based on
Loomis and Connor (1992) and FAO (1996). El-
evation was not included because it varies very
little within the flat study area. Three climatic
properties were considered: total monthly pre-

cipitation, monthly minimum temperature and
monthly maximum temperature. They were de-
rived from daily weather observations for the pe-
riod 2001-2007 at 14 weather stations distributed
across the study area and provided by the “Con-
sorzio per la Bonifica della Capitanata” (Con-
sortium for Capitanata Reclamation) (Fig. 1).

Because of the small number of weather sta-
tions inside the study area, some external
weather stations were included in the dataset.
Monthly means and standard deviations of cli-
matic properties were calculated for the period
of observation. Monthly means of climatic prop-
erties at each observation station were then
used to interpolate a raster surface of 500 m x
500 m resolution using inverse squared distance
weighting method (ArcGIS 9.1, ESRI, 2005) be-
cause the few observation stations precluded
the application of geostatistical techniques for
spatial interpolation. To reduce the number of
climatic variables, the normalised variable val-
ues for each raster cell were used in a Principal
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Figure 1. Study area and locations of the weather sta-
tions.



Component Analysis (PCA) using the FAC-
TOR procedure in SAS (SAS Institute Inc. re-
lease 9.1.3, 2009), where the 36 components
were retained to create 36-dimensional data
space. Using VARIMAX rotation, the 36 com-
ponents were transformed into 36 orthogonal
axes in the climate data space. Only the PCs ex-
plaining most of total variance were retained for
successive analysis of clustering.

Seven soil properties were used: clay (%),
silt (%), sand (%), field capacity (FC) (%), per-
manent wilting point (PA) (%), pH (-) and or-
ganic matter (OM) (%). Soil data (749) were
obtained from the soil properties database of
Apulia Region (Regione Puglia, 2001) and oth-
er datasets produced in various public research
projects (Fig. 2).

As the datasets contained values for the se-
lected soil characteristics from different profile
depths, the values were averaged over the two
depths: 0-0.4 m and 0.4-2 m.

2.3 Geostatistical and clustering analyses

The geostatistical technique used for spatial in-
terpolation was cokriging (Goovaerts, 1997).
The application of cokriging requires modelling
the coregionalization of the set of variables us-
ing the Linear Model of Coregionalization
(LMC) developed by Journel and Huijbregts
(1978). The LMC considers all the studied vari-
ables as the result of the same independent phy-
sical processes, acting on different spatial scales.
The p(p+1)/2 simple and cross variograms of the
p variables are modelled by a linear combination
of Ns standardized variograms to unit sill. Fitting1

of LMC is performed by weighted least-squares
approximation under the constraint of positive se-
mi-definiteness of the matrix of sills (coregional-
ization matrix), using an iterative procedure (La-
jaunie and Béhaxétéguy, 1989). Finally, the soil
variables were then interpolated on a 500 by 500
m-grid. As silt is statistically linked to clay and
sand, the coregionalization matrix was not posi-
tive semi – definite and silt was then excluded
from the geostatistical analysis; and its estimates

were calculated as complementary to 100 of the
sum clay + sand.

All the geostatistical analyses were carried
out using ISATIS® software package (Geovari-
ances, 2009, release 9.1).

To divide the study area into a number of
AEZ without any previous information about
the existence and the number of the groups, an
algorithm, based on nonparametric density esti-
mate, was used (Silverman, 1986; Scott, 1992).

2.4 Density estimation

The approach utilises hyperspherical uniform
kernels of fixed radius to estimate density. The
density estimation at any point of the attribute
hyperspace is computed by dividing the number
of observations, within a sphere centred at the
point, by the product of the sample size by the
volume of the sphere. The size of the sphere is
determined by a smoothing parameter (R) to be
pre-specified, which represents the kernel radius
and is expressed as a Euclidean distance. The
sphere of support of the kernel at observation
xi is referred as the neighbourhood of xi and the
observations within the neighbourhood are re-
ferred as the neighbours of xi. Therefore, the es-
timated density at xi is given by:

nif̂ i = ––––
nvi

where f̂ is the estimated density, ni the number
of neighbours of xi, nvi the sample size and
the volume of the neighbourhood. There is no
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Figure 2. Location of soil properties data.

1 To fit the linear model of coregionalization, it needs to
decompose each coregionalization matrix into an or-
thogonal matrix by using the diagonal matrix of eigen-
values. A brief determination of eigenvalues is given in
Davis (1986, pp. 107-148) and Webster and Oliver (1990,
pp. 291-298).



simple answer to the question of which smooth-
ing parameter to use even though the problem
of choosing how much must be smoothed is of
crucial importance in density estimation. After
Silverman (1986), the appropriate choice of
smoothing parameter must always be influenced
by the purpose for which the density estimate
is to be used. We chose the smoothing parame-
ter subjectively, by trying several values and re-
taining the one corresponding to the classifica-
tion deemed the best one capturing the envi-
ronmental differences described by the previous
geostatistical analysis. The number of clusters is
a function of the smoothing parameter and gen-
erally tends to decrease as the smoothing para-
meter increases. However, the relationship is
not strictly monotonic and several different val-
ues of the smoothing parameter generally have
to be specified before seeing as the number of
cluster varies.

The method is not inherently hierarchical,
however, it can do approximate nonparametric
significance tests for the number of clusters. An
approximate p-value for each cluster is com-
puted by comparing the estimated maximum
density in the cluster with the estimated maxi-
mum density on the cluster boundary. The least
significant cluster is then repeatedly joined with
a neighbouring cluster until all remaining clus-
ters are significant.

Finally, it is necessary to consider questions
of scaling of variables, so that the attribute vari-
ances do not affect the resulting clusters. As the
variables are not measured in comparable units,
some sort of standardization or scaling is re-
quired if the variables are wanted to have equal
importance in the analysis. The standardization
used in this work scales all the variables to the
same mean 0 and to the same variance 1.

In order to obtain spatially contiguous clus-
ters, the clustering algorithm was applied to the
data set of the interpolated soil variables and
retained PCs of the estimated climatic variables

and also the geographic coordinates of grid-cells
were included in the attribute dataset.

The clustering approach was implemented
by using the MODECLUS procedure of the
SAS/STAT software package (SAS, 2009, re-
lease 9.1.3).

2.5 Visualising agro-ecozones similarity using
RGB colour triplet

A statistical colouring scheme (Hargrove and
Hoffman, 2005) was used to visualise environ-
mental similarities within different agroecore-
gions. PCA was applied either before or after
clustering to condense a larger number of “raw”
environmental variables into orthogonal princi-
pal component axes and the top three PCA
components were mapped with a red-green-blue
(RGB) colour triplet. The unique colour of each
AEZ was derived by a mixture of RGB weight-
ed by relative contribution of each of the three
components to each AEZ, so reflecting the de-
gree of similarity among AEZs.

3. Results and discussion

To condense the number of climate variables, a
PCA was applied to all 36 variables followed by
a VARIMAX orthogonal rotation to make eas-
ier the interpretation of the components. The
relative contribution of the first three compo-
nents is provided in Table 1, which shows that
the three top PCs cumulatively explain about
85% of the total variance.

Factor loadings (not reported) were used to
interpret the first, second and third principal
components, which were used to create the
RGB colour triplets. Maximum temperatures
had the highest scores for the first factor; mi-
nimum temperatures for the second factor,
whereas the winter-spring rainfall had the high-
est scores for the third factor. Based on these
loadings, red colours represent dominance of
high Tmax, green colours dominance of high Tmin
and blue colours dominance of winter-spring
rainfall within a zone. The RGB image (Fig. 3)
shows as the warmer zones are located at south,
whereas the rainier zones during the winter and
spring months north-east at the border with
Gargano promontory and along the west side at
the foot of the Apennines.

To account for spatial dependence, an
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Table 1. Relative contribution of the first three components
of climatic variables.

Component Eigenvalues Proportion Cumulative

PC1 7.9519 0.57 0.57
PC2 2.5252 0.18 0.75
PC3 1.3894 0.10 0.85



isotropic LMC was fitted to all variograms of
the soil attributes. No significant spatial
anisotropy was disclosed, and the fitted LMC
included (1) a nugget effect, (2) a spherical
model with range = 8500 m and (3) an expo-
nential model with range of 35000 m. The fitted
multivariate model of spatial dependence is re-
ported in Table 2 where, for each one of the
three basic structures, the coregionalization ma-
trix, composed by the sills of the direct and
cross-variograms, is shown together with the
eigenvalues and the percentage of explained
variance (%). From the interpretation of eigen-
values, firstly it results the variance of the soil
attributes to be mostly dominated by the errat-
ic component (nugget effect) and secondly by
short-range variation. However, the selected soil
attributes were so strongly correlated between
them at short range that the first eigenvalue ex-
plained more than 89% of the variance associ-
ated with the corresponding basic structure
(Tab. 2).

In Figures 4a and 4b there are reported the
cokriged maps of the soil variables using an
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Figure 3. RGB map of climate attributes.

Figure 4a. Maps of clay percentage in topsoil (1) and
subsoil (2).

Figure 4b. Maps of silt percentage in topsoil (1) and sub-
soil (2).

(1)

(2)

(1)

(2)



isofrequency classes representation so to en-
hance the differences among the spatial pat-
terns. The maps do not reveal a well-defined
gradient and a general discontinuity occurs be-
tween topsoil and subsoil. Clay soils are pre-
dominant in the south, whereas north-eastern
soils are coarser textured on the topsoil but fin-
er textured in depth. Field capacity and wilting
point vary concordantly with clay content. A
wide median diagonal strip is characterised by
higher content of silt on both top and subsoil.

To synthesise the complex multivariate vari-
ation above described in a restricted number of
agro-ecozones, the clustering approach was ap-
plied to the all raster variables, i.e. the three re-
tained PCs of the climatic variables and the 14
soil variables including the geographic coordi-
nates. After several trials, the smoothing para-
meter was chosen equal to 1.8, because it pro-
duced the subdivision of the study area into 5
distinct clusters, deemed in good accordance
with the prior description of spatial variation.
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Table 2. Coregionalization matrices of soil attributes corresponding to three basic spatial structures. The eigenvalues (EV)
and the explained variance (P, %) corresponding percentage to each spatial scale are also reported. T is for topsoil and S
for subsoil.

pHT pHS SandT SandS OMT OMS PAT PAS CICT CICS ClayT ClayS EV P

Nugget effect

pHT 0.05 268.33 52.39
pHS 0.01 0.03 139.60 27.25
SandT 0.17 -0.20 98.22 61.52 12.01
SandS 0.50 0.43 23.58 108.64 20.34 3.97
OMT 0.00 0.07 1.88 0.80 0.32 11.89 2.32
OMS -0.01 -0.02 0.15 -0.64 0.06 0.42 7.06 1.38
PAT 0.00 0.06 -16.14 -3.81 -0.17 -0.05 8.60 1.96 0.38
PAS -0.01 0.07 -12.97 -28.76 -0.13 -0.46 3.52 23.87 1.10 0.21
CICT 0.04 0.10 -24.69 -11.43 -0.17 0.06 7.92 4.15 16.56 0.39 0.08
CICS 0.10 0.15 -14.58 -34.67 -0.01 -0.53 3.51 22.69 3.37 26.02 0.03 0.00
ClayT -0.19 0.05 -52.79 0.97 -1.36 -0.50 17.48 7.58 14.62 9.30 61.28 0.00 0.00
ClayS 0.17 -0.61 -10.53 -77.28 -2.37 -0.84 5.06 57.16 7.41 52.79 10.05 168.20 0.00 0.00

Spherical - Range = 8500 m

pHT 0.00 223.08 89.32
pHS 0.00 0.01 16.37 6.55
SandT -0.11 0.12 44.09 7.87 3.15
SandS 0.35 0.13 -61.97 101.65 2.42 0.97
OMT -0.01 -0.03 -0.73 0.02 0.09 0.00 0.00
OMS 0.01 0.01 -0.29 1.11 -0.05 0.04 0.00 0.00
PAT 0.00 0.00 -9.94 12.58 0.22 0.00 3.61 0.00 0.00
PAS -0.04 0.05 23.23 -33.25 -0.41 -0.15 -5.65 14.01 0.00 0.00
CICT 0.04 0.02 -14.78 22.00 0.17 0.14 4.04 -8.94 6.01 0.00 0.00
CICS -0.01 0.12 18.99 -24.12 -0.50 0.00 -4.23 9.72 -5.91 8.71 0.00 0.00
ClayT 0.09 -0.08 -26.00 39.14 0.37 0.27 4.53 -14.68 8.86 -10.96 17.80 0.00 0.00
ClayS -0.15 -0.24 37.98 -61.20 -0.02 -0.58 -12.09 23.69 -17.14 13.86 -21.45 53.72 0.00 0.00

Exponential - Scale = 35000 m

pHT 0.04 107.78 56.04
pHS 0.03 0.08 43.02 22.37
SandT -0.49 -0.56 47.10 25.51 13.26
SandS 0.60 1.40 0.89 30.71 12.72 6.61
OMT 0.08 -0.07 -1.61 -0.57 0.70 1.78 0.93
OMS -0.04 -0.12 0.55 -2.60 0.02 0.27 1.52 0.79
PAT 0.01 -0.06 -7.25 -1.40 0.44 0.01 2.48 0.00 0.00
PAS -0.09 -0.12 -2.17 -2.93 -0.21 0.25 1.62 2.05 0.00 0.00
CICT -0.13 -0.20 -9.60 -1.83 1.04 -0.40 3.93 1.78 10.73 0.00 0.00
CICS -0.27 -0.30 1.60 -5.47 -0.15 0.28 0.18 0.37 2.46 2.44 0.00 0.00
ClayT 1.02 1.44 -37.74 20.49 0.11 -1.13 4.06 -0.53 -4.00 -9.02 76.10 0.00 0.00
ClayS -0.04 -0.69 -1.83 -8.39 1.16 1.26 3.62 2.88 2.22 -0.31 10.11 19.63 0.00 0.00



This coarse delineation (Fig. 5) captures the
maximum dissimilarity of environmental condi-
tions across the area and the AEZs occur as
globular, continuous patches.

In Table 3 means and standard deviations of
the attributes for each cluster are reported.

The former represents the coordinates in the
attribute space of the centroids, which provide
a description of the average ecological condi-
tions in each AEZ. The cluster 1 is the rainiest
and coldest and is characterised by clay soils in
depth. The cluster 2 is the most rainy in sum-
mer and its soils are characterised by the high-
est proportion of sand on the top. In the medi-
an clusters 3 and 4 the silt component increas-
es on the top but the soil of the cluster 4 is most-
ly clay + silt along the whole profile. In this clus-
ter the highest Tmax values are recorded. The
cluster 5 does not show clear distinctive prop-
erties and here loamy soil is predominant.

The randomly coloured map of the AEZs
(Fig. 5) emphasizes the location of the borders
between the agro-ecozones, but does not give

any indication of how different environmental
conditions mix across the borders or vary with-
in the AEZs. One of the main advantages of the
proposed approach, compared with the other
traditional methods of clustering, is that it also
gives information on the intrinsic spatial struc-
ture of the cluster and on the distribution of the
residual variation within each class.

Table 4 reported the main statistics of each
cluster, i.e. the boundary frequency, the maxi-
mum estimated density, the estimated saddle
density (saddle point will be defined below), the
number of observations within the neighbour-
hood of the modal observation, the number of
observations within the neighbourhood of the
saddle observation, the ratio between these two
last counts, the number of observations within
the overlap of the two previous neighbourhoods
and the approximate p-value for the cluster.

To interpret the results shown in Table 4 and
then to make inferences regarding cluster pop-
ulations, it is necessary to remind what is meant
by a cluster according to the method using non-
parametric density estimation. A cluster is de-
fined as a region (modal region) surrounding a
local maximum of the multivariate probability
density function or a connected set of local max-
ima, therefore, if a population has two clusters,
there must be two modal regions and then a
‘valley’ between them. According to Hartigan
and Hartigan (1985) there must be a ‘dip’ be-
tween the two modes and the maximum value
of the neighbourhood distribution function
along the boundary occurs at a ‘saddle’ point.
A useful parameter to characterise the nature
of the boundary between two clusters is then
the ratio, which compares modal density with
saddle density.

From the inspection of the first 4 statistics
of the Table 4, it results that the cluster num-
ber 3 is the widest but the cluster 1 is the best
defined, realising the highest value of maximum
estimated density. However, this cluster also re-
alises the highest value of estimated saddle den-
sity, which means that it might not be well dis-
tinct from the other neighbouring clusters. On
the contrary, cluster 2 has the minimum value
for estimated saddle density and the lowest es-
timated density. The nature of the cluster
boundaries and then their “sharpness” is better
defined by the last five statistics in Table 4, in-
cluding also the results of the approximate sig-
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Figure 5. Agro-ecozones delineation.



nificance test. The clusters 3 and 2 look as the
most distinguishable from the neighbouring
clusters, realising the highest values of the ratio,
on the contrary the cluster 4 looks as the most
muddled.

However, these statistics describe the overall
behaviour of the clusters, whereas the visualiza-
tion of the density function in a 3D space can aid
to understand the differences in the environmen-
tal properties of the AEZs. The map of the den-
sity function into geographic space (Fig. 6) depicts
these values as elevations and creates a surface
whose peaks correspond to the location of the
cluster’s centroid. Because we can calculate such
a value for all cells, this probability surface is com-
plete and continue across the map.

The elevation surface also reflects the cell-
representativeness and the idealised hypotheti-
cal cluster agro-ecozones appear as a series of
peaks with borders tracing along the valleys or
depressions between the peaks. Therefore, the
highest geographic locations represent the cells
at or near the cluster’s centroid. The clusters 1

and 4 are the most distinct, with the highest
peaks and each one essentially with one single
mode. The cluster 3 shows one single central
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Table 3. Means and standard deviations of the environmental attributes relative to each cluster (only statistics for Tmin, Tmax
and precipitations of the months: January (1), April (4), July (7) and October (10) are reported).

Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Mean St dev Mean St dev Mean St dev Mean St dev Mean St dev

Clays 46.69 1.96 46.57 2.86 40.75 4.85 42.66 3.13 33.32 4.40
ClayT 34.82 3.00 24.55 3.12 28.41 5.75 40.59 5.82 31.76 4.47
CICT 43.62 1.38 43.54 1.43 42.45 2.91 43.11 1.56 38.50 2.40
CICS 31.61 1.82 27.92 1.78 33.60 1.73 34.11 2.39 29.06 2.66
SiltT 30.13 3.16 29.55 2.81 34.45 3.50 34.80 1.81 35.25 3.56
SiltS 29.36 3.28 25.85 1.80 35.41 4.47 32.28 3.72 28.72 3.62
PAS 28.00 1.21 27.97 1.60 25.15 2.55 25.71 1.75 20.69 2.79
PAT 17.81 1.10 15.57 1.23 18.66 1.11 19.50 1.37 16.82 1.19
pHS 7.84 0.27 8.00 0.00 8.00 0.03 8.30 0.46 8.00 0.03
pHT 7.88 0.16 8.00 0.00 7.97 0.09 8.00 0.00 8.00 0.00
SandS 23.18 3.21 23.76 1.42 24.87 6.32 22.37 3.44 31.39 3.18
SandT 35.82 5.11 49.56 3.25 36.19 5.47 27.16 7.82 39.54 6.22
OMS 1.27 0.33 1.80 0.40 1.84 0.34 1.48 0.50 1.44 0.50
OMT 1.33 0.38 1.20 0.40 2.37 0.52 2.57 0.61 2.84 0.46
P1 79.51 6.82 71.07 1.71 71.67 6.45 62.23 1.27 65.92 2.86
P4 78.11 3.28 64.38 5.17 64.93 10.63 49.53 1.04 54.00 3.81
P7 20.09 0.89 20.93 0.36 20.38 0.68 19.14 0.34 20.03 0.61
P10 50.45 1.92 46.08 2.10 45.79 3.94 40.74 1.00 41.67 1.59
Tmin1 3.26 0.16 3.49 0.04 3.42 0.14 3.36 0.05 3.47 0.07
Tmin4 7.15 0.16 7.44 0.05 7.39 0.18 7.70 0.08 7.55 0.08
Tmin7 18.99 0.20 19.41 0.10 19.35 0.27 19.55 0.06 19.58 0.05
Tmin10 11.95 0.27 12.27 0.04 12.14 0.19 11.91 0.09 12.14 0.14
Tmax1 12.12 0.58 12.47 0.07 12.48 0.38 13.20 0.21 12.76 0.24
Tmax4 20.04 0.88 20.44 0.10 20.45 0.53 21.30 0.24 20.75 0.31
Tmax7 33.93 1.09 34.43 0.12 34.37 0.62 35.16 0.25 34.62 0.31
Tmax10 23.40 0.81 23.86 0.11 23.89 0.54 24.78 0.21 24.27 0.31

Figure 6. Density estimation topography for the study
area. The boundaries between agro-ecozones are drawn
as bold lines.



mode but most of the outlying cells are at low
elevation. The cluster 5 looks more compact
than the others, showing a set of connected
modes, whereas for the cluster 2 no clear high
spot is evident corresponding with the cluster’s
centroid. A great advantage of this clustering
method and the 3D visualization of the proba-
bility density is the possibility of viewing the
morphology of the surface and then of making
an assessment of the residual local variation
within each cluster. The traditional methods
produce average properties of each cluster and
a global estimation of within-cluster variation,

supposed homogeneously distributed. The 3D
graph clearly shows how the clusters have dif-
ferent degrees of compactness in attribute space
and how some clusters, such as the clusters 2
and 5, actually show several local modes, mak-
ing not clearly defined what a cluster is meant.

Since a cluster is defined by the properties
of its modal point, the 3D graph shows how the
departures from these properties may occur
abruptly or gradually on the slope of a peak in-
dicating a fuzzy, gradual area of transition. More-
over, the borders may also change from fuzzy to
sharp or vice versa and, because edge properties
are dependent on each adjacent cluster, each side
may have distinct and different properties. This
“sideness” property may appear initially as coun-
terintuitive, but it is completely logical because
we are characterising the transition from the bor-
der to the centroid independently on each side
(Hargrove and Hoffman, 1999). Figure 7 shows
equal-elevation probability contours visualising
the sharpness of the AEZ borders. The contour’s
random orientation and meandering character at
the borders between the clusters 1-2 and 3-4
clearly indicate that these edges are transition ar-
eas. On the contrary, closely-spaced, parallel con-
tour lines separating the clusters 2 and 3 and the
cluster 5 from the outside the study area indicate
abrupt changes. Moreover, the border between
the cluster 4 and 5 looks sharp on the western
part and on the side of the cluster 4, but more
fuzzy on the other side. Contour lines then have
the flexibility to represent mixed gradual / sharp
borders, as well as borders whose characteristics
change along their length. In the particular envi-
ronmental conditions under study the borders
generally change sharpness characteristics along
their length, since deep valleys alternate with
high saddle points.

Figure 8 shows the same AEZs but using the
RGB-colour triplet, created applying PCA to
the whole set of the nineteen environmental
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Table 4. Statistics for the 5 clusters.

Cluster Boundary Maximum Estimated Mode Saddle Ratio Overlap Approximate
frequency estimated density saddle density count count count P-value

1 967 1.32 x 10-5 4.12 x 10-6 317 98 3.23 0 1 x 10-6

2 849 9.57 x 10-6 2.04 x 10-6 229 48 4.77 0 1 x 10-6

3 2854 1.09 x 10-5 2.20 x 10-6 260 52 5.00 0 1 x 10-6

4 1785 1.14 x 10-5 3.74 x 10-6 273 89 3.07 0 1 x 10-6

5 1441 1.08 x 10-5 2.83 x 10-6 259 67 3.87 0 1 x 10-6

Figure 7. Agro-ecozones represented with equal-eleva-
tion contours of the density estimation.



variables, including the geographic coordinates,
the three PCs of the previous meteorological
analysis and the fourteen soil variables. Varimax
rotation factor loadings were used to interpret
the first three PCs, which cumulatively ex-
plained about 76% of the total variance. Based
on these loadings (not reported), red colours
represent dominance of maximum temperature,
clay content, pH and organic matter on the top
soil; green colours represent dominance of clay
content, FC and WP in depth, and blue colours
of silt content along the whole profile, FC and
WP on the top soil and low rainfall during the
winter and spring months. In this representation
individual cluster borders disappear and the
colours reveal similarities among the environ-
ments in each AEZ. The red south is dominat-
ed by high temperature and clay content on the
top soil; the blue central part is dominated by
higher content of silt and low precipitation; the
green north-east is characterised by higher con-
tent of sand on the top soil and clay content in
depth. Abrupt colour changes are generally re-

lated to parallel contours (Fig. 7), whereas sub-
tle colour changes are generally accompanied
by the meandering contours of a transition area.
However, locations with equal elevations may
have different colours within the same cluster
due to differences in environmental conditions.

Visualisation, such as that produced, can al-
so provide a way to assess the appropriateness
of geographic clustering. For example, the ap-
pearance of multiple peaks within a single clus-
ter, such as in the cluster 5, might suggest that
we need more divisions, whereas border passing
through high saddle areas might suggest we
need fewer, as the cluster 4.

4. Conclusions

The achievement of compact classes in the
space of environmental attributes, which are al-
so contiguous in geographic space, is highly de-
sirable in agro-ecozoning and mapping. This
study has demonstrated that combining contin-
uous classification with geostatistical interpola-
tion can provide useful means for automatical-
ly locate boundaries between AEZs. By limiting
input variables to those more specifically crop
relevant, AEZ delineation is more likely to re-
flect agriculturally relevant differentiation of
the environment than the traditional regionali-
sation. Therefore, a primary application of this
method is the evaluation of crop suitability. If
the crop growth needs are known, the approach
can be used as a screening tool, through an in-
dicative transform, in suitability analysis.

Further, the method overcomes the limita-
tions associated with a discrete delineation be-
tween AEZs by creating complex borders and
regions of transition between the zones. A great
advantage consists in giving a visual and quan-
titative assessment of environmental both be-
tween - and within AEZ variability in crop per-
spective, which is quite useful in agricultural
land use decision making.

An animation of 3D graph of the density
function is available at: http://www.siagr.org/
riproducivideo.asp?file=3D_scene_1_minute.avi
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