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Abstract 

As a water-saving method, moistube irrigation has been widely used. To ensure the effectiveness of 

moistube irrigation the development of an infiltration prediction model under moistube irrigation 

based on the interaction of multiple factors is required. In this paper, soil water infiltration tests with 

different bulk densities (1.2 g/cm³, 1.3 g/cm³, and 1.4 g/cm³) and textures (loamy sand, sandy loam, 

and clay loam) under different pressure heads (1m, 1.5m, and 2m) were designed, and the test data 

were analyzed by gray correlation theory. The pressure head, bulk density, clay content, silt content, 

sand content, and initial water content were determined as input variables, and the model structure 

was composed with two parameters of Kostiakov's model as output variables. Then, the genetic 

algorithm was used to optimize the back propagation neural network and the particle swarm algorithm 

to optimize the support vector machine. The soil moisture prediction model under moistube irrigation 

was established, finally the model was compared and analyzed. The results showed that the 

consistency effect of the two models was good. However, compared with the BP neural network 

prediction model optimized by genetic algorithm, the particle swarm algorithm optimized the support 

vector machine based moistube irrigation prediction model had higher accuracy. The results of this 

experiment can provide theoretical support for the exploration and modelling prediction of soil water 

infiltration under moistube irrigation. 

 

Introduction 

The scarcity of freshwater resources has become a threat to agricultural development and the 

security of the world's food supply due to population growth, climate change, and the loss of 

agricultural land (Zilov, 2013; Sattari et al., 2020). However, the development of water-saving 

irrigation can solve the problem of a shortage of fresh water resources and rising food demand 

(Hamududu and Ngoma, 2020; Zhou et al., 2021; Khamidov, 2019). As a type of water-saving 

irrigation method, moistube irrigation has the advantages of low energy consumption, high water 

utilization rate, and enhancement of agricultural output, so it has been widely used and developed 

(Dirwai et al., 2021). Xue et al., 2013 tested soil water infiltration during moistube irrigation with 

various pressure heads, and the results revealed that the pressure head had a positive correlation with 

the cumulative infiltration rate. Zhang et al., 2017 investigated soil water infiltration experiments 



 

 

with different bulk density under moistube irrigation, and the results showed that the cumulative 

infiltration rate was negatively correlated with soil bulk density. For silty clay loam and coarse sandy 

loam, Dirwai et al., 2022 created a geometric empirical model of soil wetting, and the calibration of 

the model showed that soil texture affected water movement. Zhang et al., 2016 evaluated how clay 

and clay loam affected soil water infiltration under moistube irrigation. Studies indicated a negative 

relationship between clay content and the cumulative infiltration rate. Most studies have only 

investigated the effects of two factors under moistube irrigation. 

Back propagation neural networks (abbreviation, BP) have ideal adaptability and fault tolerance, 

and they are widely used in intelligent computing (Jain, 2010; Jain et al., 1996). However, issues with 

the computation process, such delayed convergence and an easy fall into local extremums, will arise, 

leading to significant mistakes in the outcome(Basheer and Hajmeer, 2000; White, 1989; Embrechts 

et al., 2014; Christiansen et al., 2010). The genetic algorithm (abbreviation, GA) uses a parallel search 

mechanism to seek the most ideal results for individuals in the fitness function (Yang and Honavar, 

2002; Bekiroglu et al., 2009; Yuen and Chow, 2009). Therefore, the genetic algorithm can find the 

optimal values of weights and thresholds in the BP neural network, so as to improve the prediction 

effect of the BP neural network (Leung et al., 2003; Cai et al., 2019). Support vector machine 

(abbreviation, SVM) is an effective machine learning algorithm proposed on the basis of statistical 

theory that can solve the problems of small sample, nonlinearity, and high dimensionality (He et al., 

2013; Li et al., 2010; Chauhan et al., 2019). The traditional SVM uses the grid search cross-validation 

method to optimize its parameters, but the subjective factors of this method are greatly affected, and 

the search and verification process takes a long time. The particle swarm algorithm (abbreviation, 

PSO) has the advantages of strong guidance, fast convergence speed, and high accuracy, which can 

find the optimal solution of the support vector machine parameters and improve the prediction 

accuracy of the model (Kun et al., 2015; Song et al., 2022; Lin et al., 2008). Therefore, the two 

optimized models are widely used in many fields and disciplines. Liang et al., 2019 investigated the 

inversion of soil moisture using the GA-BP method, the experiment indicated that the non-linear 

fitting ability of the model was well developed and the fitting process was stable. Qin and Fan, 2021 

researched the Loess Plateau’s distinctive curves for predicting soil water. All of the results 

demonstrated that this method was reliable and universally useful. Based on the PSO-SVM prediction 



 

 

model, Li et al., 2010 analyzed the erosion characteristics of small watersheds, and Xue et al., 2020 

established a freeze-thaw soil evaporation prediction model. The results showed that the GA-BP and 

PSO-SVM method had a good prediction effect. 

There are many influencing factors of soil water infiltration under moistube irrigation. The 

purpose of this paper is to analyze the influence of multiple factors, and to study and analyze the 

prediction model of soil water infiltration under the interaction of multiple factors. In this study, soil 

moisture infiltration data of different bulk density and texture under different pressure heads were 

obtained through an indoor moistube irrigation infiltration test. The gray correlation analysis method 

was used to analyze the interaction of multiple factors to determine the input variables of the model, 

and the BP neural network method optimized by genetic algorithm and the support vector machine 

method optimized by particle swarm algorithm were used to establish the Kostiakov model of soil 

water infiltration under moistube irrigation. The two models were compared and analyzed to select 

the best prediction model. The hypothesis of the test is that the PSO-SVM method is more suitable 

than the BP method for the soil water infiltration model of the moistube irrigation. It is hoped that the 

results of this experiment can provide a reference and basis for improving the relevant theory of soil 

water infiltration under moistube irrigation. 

 

Materials and Methods 

Experimental equipment 

The experiment was performed in the Soil Science Laboratory of the College of Water 

Conservancy and Engineering, Taiyuan University of Technology, China. A movable bracket, 

Mariotte bottle, water pipe, moistube pipe, soil box, and other components made up the majority of 

the experimental apparatus. The movable bracket is an iron bracket with a horizontal top portion and 

a height adjustment range of around 2m. On the Mariotte bottle, which has a scale marked on it, the 

change in scale during the test is read to determine the amount of water consumed. The black 

polyethylene (PE) water pipe, which joins the Mariotte bottle and the moistube pipe, has an inner 

diameter of 16 mm. The moistube measured 1 m in length, 16 mm in inner diameter, and 1 mm in 

wall thickness. The soil box is made of plexiglass panels and measures 100 cm × 40 cm × 40 cm 

(length × width × height), the experimental apparatus is shown in Figure 1. The soil samples utilized 



 

 

in the experiment were from Shanxi Province's Taiyuan, Datong, and Yuncheng cities. The soil 

samples were homogeneously mixed and sieved with a 2 mm sieve after air dried and crushed with a 

stone roller. A laser particle size analyzer was used to determine the soil particle size distribution, and 

the drying method was used to determine the initial soil water content. The basic physical properties 

of soil samples are shown in Table 1. 

 

Experimental design and methods 

In this paper, the control variable method was used to carry out two sets of experiments, using 

three different pressure heads of 1m, 1.5m, and 2m were set in both groups. Experiment 1 was the 

soil water infiltration test, in which soils with bulk densities of 1.20g/cm3, 1.30g/cm3, and 1.40g/cm3 

were infiltrated under three different pressure heads. Experiment 2 was a soil moisture infiltration test 

for loamy sand, sandy loam, and clay loam (LS, SL, and CL) under three different pressure heads, 

and the bulk densities of the three textures were 1.5 g/cm3, 1.5 g/cm3, and 1.4 g/cm3, respectively. 

Depending on the needed bulk density, a given number of soil samples were placed into the soil box 

with a thickness of about 5cm for each layer. The moistube pipe was then installed horizontally on 

the soil surface when the depth of the soil hit 20cm, and the two ends of the tube went into the holes 

in the center of both sides of the box. The required soil depth was achieved by filling the soil box 

with a further 20 cm depth of soil. 

The height of the movable stand was modified prior to the start of the test. After testing the 1m 

pressure head, the bracket was modified to a height of 1m and the Mariotte bottle was inserted. Before 

the experiment began, the water level in the Mariotte bottle was measured, and the valve was opened 

to deliver water. When measuring the 1.5m and 2m pressure heads, the procedure outlined above was 

repeated at the desired height. The valve had been shut down after 120 hours. The water level in the 

Mariotte bottle was noted every 2 hours during the first 12 hours after the water was first delivered, 

followed by every 12 hours after that. The cumulative infiltration was calculated from the remaining 

amount of water in the Mariotte bottle over time. Every experimental treatment was carried out three 

times. 

 

Data processing and analysis 



 

 

In this work, the Kostiakov two-parameter model was adopted. This model is one of the many 

soil water infiltration models proposed according to the basic principle of Darcy's law infiltration, 

which has the advantages of wide application, high accuracy and easy understanding. And the specific 

formula is: 

𝐼 = 𝛼𝑡!                              (1) 

Where I is the cumulative infiltration at any point in time, cm3; a is the infiltration coefficient; 

b is the infiltration index, which reflects the decay rate of soil infiltration capacity; t is the infiltration 

time, min. 

For the prediction model established in this paper, the accuracy of the model was evaluated by 

absolute error (AE), relative error (RE), root mean square error (RMSE), and coefficient of 

determination (R²), and the specific formulas are: 

𝐴𝐸" = |𝑥" − 𝑥"#|                          (2) 
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Where xi is the measured value; 𝑥"# is the predicted value; 𝑥,#1  is the average of the measured 

values; n is the number of samples. 

 

The analysis step for gray correlation 

Establish parent and child sequences 

Set a number of research objects and call the main sequence of research objects the parent 

sequence, that is: 

𝑋/ = 5𝑋/(1)，𝑋/(2)，⋯，𝑋/(𝑖):            (6) 

Where, i=1, 2, …, n. 

The object being evaluated is a subsequence, that is: 

𝑋0 = 5𝑋0(1)，𝑋0(2)，⋯，𝑋0(𝑖):           (7) 

Where, i=1, 2, …, n；k =0, 1, 2, …, n. 



 

 

 

Dimensionless averaging processing of data 

Averaging is performed to obtain a new sequence, and the formula is as follows: 

𝑋0;(𝑖) = *1'(")
∑ 1'#
!$% (")

        (8) 

Where, i=1, 2, …, n；k =0, 1, 2, …, n. 

 

Determine the correlation coefficient 

The degree of correlation between curves can be measured by the size of the curve difference, 

and the difference between the parent sequence curve and the sub-sequence curve is the correlation 

coefficient, which is described as follows: 

𝐿0(𝑖) =
∆(!#5/.7∆(!#
∆'(")5/.7∆()*

        (9) 

∆0(𝑖) = |𝑋/(𝑖) − 𝑋0(𝑖)|      (10) 

∆8"*= min
.9:9;

{𝑚𝑖𝑛[∆0(𝑖), 𝑖 = 1, 2,⋯ , 𝑛]}     (11) 

∆8<%= max
.9:9;

{𝑚𝑎𝑥[∆0(𝑖), 𝑖 = 1, 2,⋯ , 𝑛]}     (12) 

 

Calculate the degree of relevance 

The information provided by the correlation coefficient is too scattered and inconvenient to 

compare, so the correlation coefficient is weighted to obtain the correlation degree. The correlation 

coefficient determined by combining the points yields the correlation degree Rk，the calculation 

formula is as follows: 

𝑅0 =
.
*
∑ 𝐿0(𝑖)*
"-.        (13) 

Where, i=1, 2, …, n. The magnitude of the correlation degree Rk can reflect the degree of 

association between the parent sequence and the subsequence, and the greater the correlation, the 

closer the relationship. When the general correlation degree is greater than or equal to 0.8, it indicates 

that the subsequence has a good correlation with the parent sequence; when the correlation degree is 

between 0.6 and 0.8, the correlation is good; when the correlation degree is less than 0.5, it indicates 

that the subsequence is essentially not related to the parent sequence.  



 

 

The genetic algorithm optimizes the BP neural network model 

To increase the model's accuracy, the genetic algorithm adjusts the BP neural network's 

parameters. The GA-BP neural network calculation procedure is primarily separated into three stages: 

BP neural network structure determination, genetic algorithm optimization of BP neural network 

weight and threshold, and BP neural network prediction. Figure 2 displays the specific algorithm. 

 

Particle swarm optimization optimizes the support vector machine model 

Using the SVM algorithm based on PSO optimization to find the optimal model parameters, 

which can avoid the problems of large calculations and low accuracy of grid search and cross-

validation methods, and the basic operation process is shown in Figure 3. 

 

Results and Discussion 

The interaction of multiple factors 

The results of the cumulative infiltration are shown in Figure 4(a-c), and the cumulative 

infiltration at 1.2 g/cm³, 1.3 g/cm³, and 1.4 g/cm³ increased significantly over 120 hours as the 

pressure head increased from 1m to 2m. However, the difference in cumulative infiltration between 

soils under different bulk densities was small at 0-12 hours and large at 12-120 hours. With the 

increase of bulk density from 1.2 g/cm³ to 1.4 g/cm³, the greater the bulk density, the smaller the 

cumulative infiltration under the pressure head of 1m, 1.5m, and 2m. As the moistube contains nano-

pores that are uniformly and densely distributed over the moistube surface, during irrigation, the soil 

water movement approximates line source infiltration. Many researchers have shown that soil bulk 

density is an important factor that affects soil infiltration capacity. Under the same soil conditions, 

when the soil bulk density increases, the soil becomes dense and porosity decreases, which results in 

a decrease of soil infiltration capacity (Dao, 1993; Yang and Zhang, 2011; León et al., 2015; Naglič 

et al., 2014). The same result was seen in this experiment. As shown in Figure 4(d-f), the cumulative 

infiltration of loamy sand (LS), sandy loam (SL) and clay loam (CL) increased significantly at 120 

hours as the pressure head increased from 1 m to 2 m. At the same time, under the pressure head of 

1m, 1.5m and 2m, the cumulative infiltration of different soil textures in 120 hours was loamy sand 

(LS) > sandy loam (SL) > clay loam (CL). The cumulative infiltration of loamy sand (LS) is the 



 

 

largest at a high pressure head of 2m, and the cumulative infiltration of clay loam (CL) is the lowest 

at a low pressure head of 1m. The cumulative infiltration was greater for coarse-textured soil and less 

for fine-textured soil under moistube irrigation. 

As shown in Figure 5(a-c), the infiltration rates of the moistube under different pressure heads 

and soil bulk densities increased rapidly during the first 12 hours, then decreased over the next 12–

36 hours, and it stabilized after 48 hours . For different pressure heads, the infiltration rates of the 

moistube ranked as 2m > 1.5m > 1m with significant differences among them. Soil bulk densities 

ranked as 1.20 g/cm3 > 1.30 g/cm3 > 1.40 g/cm3 with significant differences among them under the 

pressure head of 2m and 1.5m. Under the 1m pressure head, the infiltration rate of the moistube for 

1.30 g/cm3 was close to 1.40 g/cm3 with no significant difference between them, both were 

significantly lower than 1.20 g/cm3. As shown in Figure 5(d-f), the infiltration rate of the moistube 

under different soil textures increased rapidly over 0–12 hours, then decreased over 12–24 hours, and 

levelled off after 36hours. For different soil textures, the infiltration rates of the moistube ranked as 

loamy sand (LS) > sandy loam (SL) > clay loam (CL) with significant differences among them. As 

the pressure head increases, the infiltration rates of the moistube ranked as loamy sand (LS) > sandy 

loam (SL) > clay loam (CL) with among them. The infiltration rates of the moistube increased rapidly 

at the beginning of irrigation, then decreased and remained at a stable level as time went on. The 

potential reason for this was that nano-pores at the surface of the moistube could not be completely 

opened when the moistube began to irrigate, and the discharge of moistube was unstable until the vast 

majority of nano-pores were opened under the water pressure. There was an induction period that 

probably occurred within 12 hours of the start of moistube irrigation, and the discharge of moistube 

remained stable after 36-48 hours of irrigation. In addition, the water potential difference between 

inside and outside of the moistube is large when irrigation begins, and the discharge of the the 

moistube is higher. As irrigation time went on, the water potential difference became smaller, and the 

discharge was gradually stable(Qiu et al., 2015; Niu et al., 2017). The difference between the time 

needed to develop the stable infiltration rate of moistube may have been related to the pressure head, 

soil bulk density, soil texture, soil initial water content, and different test conditions. 

 

 



 

 

Determination of input and output parameters 

The Kostiakov infiltration model was applied in this study. The infiltration coefficient and 

cumulative infiltration were quantitatively close at the end of the first unit period. The level of soil 

infiltration capacity degradation was demonstrated by the infiltration index. Both the parameters a 

and b are affected by the pressure head, soil density, soil texture and initial water content. The higher 

the volumetric water content of the soil, the lower the water suction and the slower the rate of soil 

water infiltration, resulting a decrease in the magnitude ofthe parameters a and b of the Kostiakov 

infiltration model. The soil was denser, the soil porosity was smaller, the connectedness was worse, 

and the infiltration flux per unit area was lower due to the bulk density of the soil being higher. As a 

result, the Kostiakov infiltration model's parameters a and b were reduced. The percentage content 

of clay, silt, and sand particles in the soil is typically used to characterize the soil texture, since soil 

texture is the ratio of soil solid phase particles at each grain level. The amount of clay in the soil was 

larger, the soil particles were smaller, and the adsorption capacity was greater, which caused a drop 

in both the water flux and the pace at which water seeped into the soil. In turn, the Kostiakov 

infiltration model's parameters a and b had lower values. 

The influencing factors of soil water infiltration under moistube irrigation include the pressure 

of the water source and the initial moisture content, bulk density, texture that characterize the basic 

physical and chemical properties of soil. Since the influence of each factor on the model parameters 

cannot be quantified, the correlation between the physical and chemical parameters and the model 

parameters cannot be judged. Therefore, the gray correlation degree of each influence factor is 

calculated by using gray correlation theory. The factors are ranked, and the influence degree of each 

factor on the parameters of the Kostiakov infiltration model is quantified, which provides a basis for 

a reasonable selection of input factors of the prediction model. The correlation degree between the 

parameters of Kostiakov infiltration model α and b and pressure head, soil bulk density, soil texture, 

and soil initial moisture content is calculated, and the results are shown in Table 2. The relevance of 

parameter α is sorted as: X1> X2=X6> X3> X4> X5, and the relevance of parameter b is sorted as: 

X2> X6> X1> X3> X4> X5. The correlation degree of the six impact factors was greater than 0.6, 

and the correlation degree was good. Because the soil sample was air-dried soil, the initial water 

content was relatively low, resulting in a low ranking. Finally, six indexes, namely pressure head, soil 



 

 

bulk density, clay content, silt content, sand content, and initial water content, were selected as input 

variables, and the infiltration coefficient and infiltration index were selected as output variables, so 

as to establish the prediction model of Kostiakov soil water infiltration under moistube irrigation. 

 

The results of the predictive models 

A total of 68 sets of data were gathered for this investigation. The training dataset and verification 

dataset were split into two groups according to a 4:1 ratio, with 54 sets of data in the training set and 

14 sets in the verification set. There were five main indicators affecting soil water infiltration under 

moistube irrigation, and the target parameters were the infiltration coefficient and infiltration index 

of the Kostiakov infiltration model. The GA-BP model and PSO-SVM model were used to predict 

the parameters α and b, and the model effect and accuracy were analyzed for the predicted value and 

measured value of the model. 

 

The effect of the GA-BP prediction model 

In this study, the GA-BP prediction model's input layer was 6, the output layer was 2, and the 

hidden layer was 8. The evolutionary algorithm used in this study had a population size of 10, a 

maximum of 120 iterations, a crossover probability of 0.4, and a mutation probability of 0.02. 

The GA-BP model was used to forecast the Kostiakov infiltration model parameters α and b. The 

training and validation impacts were assessed based on the consistency of the model's anticipated and 

measured values. The consistency was stated as the slope (k) and coefficient of determination (R2) of 

the linear equation produced from the model's predicted and measured values, and the results are 

displayed in Figure 6. For the training set, the slopes (k) of the parameters a and b were 0.9506 and 

0.9566, respectively, and their coefficients of determination (R²) were 0.9207 and 0.9486, respectively. 

For the validation set, the slopes (k) of the parameters a and b were 0.9814 and 1.003, respectively, 

and their coefficients of determination (R²) were 0.9868 and 0.9739, respectively. The slope (k) and 

coefficient of determination (R2) of the parameters and were extremely close to one, demonstrating 

that the projected values of the GA-BP model training set samples are consistent with the measured 

values. 

 



 

 

The effect of the PSO-SVM prediction model  

In this paper, the population size of the particle swarm algorithm was set to 30, the maximum 

number of iterations was 120, and the optimal values of the penalty coefficient C of the two 

parameters, the kernel parameter g, and the width of the insensitive loss function e are obtained 

according to the set accuracy conditions. The optimal result of the parameter a: C was 81.26, g was 

2.69, e was 0.013. The optimal result of the parameter b: C was 79.30, g was 19.87, e was 0.034. 

The parameters a and b of the Kostiakov infiltration model were predicted using the PSO-SVM 

model, and the slope (k) and coefficient of determination (R²) expressed in agreement were shown in 

Figure 7. For the training set, the slopes (k) of the parameters a and b were 0.9686 and 0.9712, 

respectively, and their coefficients of determination (R²) were 0.9902 and 0.9833, respectively. For 

the validation set, the slopes (k) of the parameters a and b were 0.9894 and 0.9736, respectively, and 

their coefficients of determination (R²) were 0.9947 and 0.9860, respectively. It can be seen that the 

slope (k) and coefficient of determination (R²) of the parameters a and b were very close to 1, 

indicating that the predicted values of the training set samples of the PSO-SVM model were in good 

agreement with the measured values. 

 

Comparison of predictive models 

According to the error results between the predicted value and the measured value of the model, 

the prediction accuracy of the training set and the validation set was evaluated. The error results were 

displayed by the statistical indicators AE, RE, and RMSE, and the results are shown in Table 3. Under 

the GA-BP prediction model, the AE mean and RE mean values for the training set for parameter a 

were 0.0076 and 0.0663, respectively, and the verification set were 0.0059 and 0.0481, respectively. 

For parameter b, the AE mean and RE mean of the training set were 0.0221 and 0.0241, respectively, 

and the average values of the validation set were 0.0192 and 0.0221, respectively. From the results, 

the error statistical index of parameter a and b were less than 6.6%. Under the PSO-SVM prediction 

model, the AE mean and RE mean values of the training set for parameter a were 0.0062 and 0.0549, 

respectively, and the verification set was 0.0055 and 0.0461, respectively. For parameters b, the AE 

mean and RE mean of the training set were 0.0078 and 0.0088, respectively, and the verification set 

was 0.0076 and 0.0086, respectively. From the results, the error statistical indicators of parameter a 



 

 

and b were less than 5.5%. Under the GA-BP prediction model and PSO-SVM prediction model, the 

error of the validation set was smaller than that of the training set, and the value of RMSE was that 

the result of the validation set was greater than that of the training set. This showed that the GA-BP 

neural network prediction model and PSO-SVM prediction had high accuracy. 

According to the consistency of the effect plots of the two prediction models, the slope (k) and 

coefficient of determination (R²) of the parameters a and b were very close to 1, indicating that the 

GA-BP prediction model and the PSO-SVM prediction model have strong prediction effects. 

According to the error analysis of the predicted values and measured values of the parameters a and 

b, it can be seen that the accuracy of the PSO-SVM prediction model was 0.83 times higher than that 

of the GA-BP prediction model. Therefore, the PSO-SVM prediction model of soil water infiltration 

under moistube irrigation established in this paper has higher accuracy. 

 

Model application analysis 

There are numerous models of soil water infiltration, with the Kostiakov model being frequently 

employed because of its simple structure, easy calculation, and lower criteria. Based on the measured 

date, Hasan et al., 2015，Magnus et al., 2014，O'Brien et al., 2014 all created the Kostiakov model 

of soil water infiltration, and the findings revealed that the model was in accordance with the 

cumulative infiltration value. Utin and Oguike, 2018 developed model of soil moisture infiltration for 

various soil types, and the results showed that the Kostiakov model performance exceeded the Philip 

model for soils derived from sandstone and alluvial soils. Sun et al., 2019 investigated soil water 

infiltration under moistube irrigation and found that Kostiakov's infiltration model was compatible 

with a correlation between cumulative infiltration amount and infiltration time. Zhang et al., 2018 

investigated the effects of different pressure heads and moistube burial depths on the cumulative 

infiltration of soil water, and obtained results indicating that the changes of the cumulative infiltration 

of moistube irrigation were consistent with the Kostiakov model. In this study, the Kostiakov 

infiltration model under moistube irrigation was established with the cumulative infiltration of 

different pressure heads, soil bulk density and soil texture, and the results were consistent with the 

conclusions of the previous studies described above. Therefore, the cumulative infiltration under 

moistube irrigation according to different influencing factors is in line with the Kostiakov infiltration 



 

 

model. 

The drawbacks of conventional BP neural networks, which have a high reliance on weights and 

thresholds, are resolved, and the ability to solve problems is improved, by combining genetic 

algorithms and BP neural networks. Similarly, particle swarm optimization has the characteristics of 

strong guidance, fast convergence speed, and high solution accuracy, which can improve the 

algorithm recognition accuracy of the support vector machine and optimize the prediction effect of 

the model. In this study, the measured datasets of soil moisture infiltration under moistube irrigation 

with different pressure heads, bulk densities and soil textures were obtained according to the indoor 

soil box experiment. Then, according to the pressure head, bulk density, clay content, silt content, 

sand content and initial moisture content, the prediction of Kostiakov's infiltration model was carried 

out using the BP neural network method optimized by a genetic algorithm and the support vector 

machine method of particle swarm optimization. And the accuracy and prediction effect were good, 

and the accuracy of PSO-SVM was higher. Kun et al., 2015 established a hyperspectral inversion 

model of soil organic matter content. Ming et al., 2021 explored the prediction methods of soil 

moisture. The results of multiple models were comparatively analyzed, and the results showed that 

the accuracy of the PSO-SVM prediction model was higher, which is consistent with the results of 

this paper. Therefore, the GA-BP and PSO-SVM prediction methods are widely used, and good 

prediction accuracy and prediction effect can be achieved under different influencing factors and 

experimental conditions of soil water infiltration under moistube irrigation. 

 

Conclusions 

According to the influencing factors of soil water infiltration under moistube irrigation, the gray 

correlation theory was used to determine the input variables of the model. The two parameters of the 

Kostiakov model of soil water infiltration were taken as the output variables. Then, the BP neural 

network method improved by a genetic algorithm and the support vector machine method optimized 

by the particle swarm algorithm. Finally, the soil water infiltration prediction model under moistube 

irrigation were established. Whether it was a training set or a validation set, both predictive models 

had good prediction effects. In addition, the PSO-SVM model established in this paper has higher 

accuracy than the GA-BP neural network model. The results showed that the predictive PSO-SVM 



 

 

model for soil moisture infiltration under micro-irrigation was more suitable in small-sample tests. 
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Figure 1. Schematic illustration of the soil box test device. 

 

 

 

 
Figure 2. The GA-BP neural network flowchart. 

 

 



 

 

 
Figure 3. The PSO-SVM neural network flowchart. 

 

 

 

 
Figure 4. Cumulative infiltration with different pressure heads, bulk density, and texture. 



 

 

 

 
Figure 5. The infiltration rate of different pressure heads, bulk density, and texture. 

 

 

 
Figure 6. Prediction results of parameters under the GA-BP model. 



 

 

 

 
Figure 7. Prediction results of parameters under the PSO-SVM model. 

 

 

 

 

Table 1. Basic physical properties of the tested soils. 

Soil Texture 
Bulk Density 

(g/cm3) 

Initial water content 

(%) 

Particle Size (mm) 

0~0.002 0.002~0.02 0.02~2.00 

Clay loam 1.20, 1.30, 1.40 2.26 23.30 40.58 36.12 

Loamy sand 1.5 2.12 5.20 7.32 87.48 

Sandy loam 1.5 2.37 12.31 25.24 62.45 

Clay loam 1.4 2.44 20.43 43.25 36.32 

 

 

 

 

 



 

 

Table 2. Calculation of the correlation of model parameters α and b with the impact factor. 

factors 
Pressure 

head (X1) 

Bulk 

density(X2) 

clay 

content(X3) 

silt 

content(X3) 

sand 

content(X4) 

initial water 

content 

(X5) 

α 0.808 0.792 0.777 0.768 0.749 0.792 

b 0.697 0.937 0.695 0.650 0.649 0.833 

 

 

Table 3. The accuracy results of the two predictive models. 

Methods Performance 

Parameter a Parameter b 

Training 

set 

Validation 

set 

Training 

set 

Validation 

set 

GA-BP 

AE Max 0.0338 0.0147 0.0497 0.0237 

Min 0.0018 0.0005 0.0006 0.0007 

Mean 0.0076 0.0059 0.0221 0.0192 

RE Max 0.1161 0.0953 0.0566 0.0379 

Min 0.0094 0.0069 0.0006 0.0008 

Mean 0.0663 0.0481 0.0241 0.0221 

RMSE 0.0011 0.0011 0.0012 0.0021 

PSO-SVM 

AE Max 0.0179 0.0175 0.0267 0.0140 

Min 0.0008 0.0005 0.0023 0.0043 

Mean 0.0062 0.0055 0.0078 0.0076 

RE Max 0.1216 0.0933 0.0320 0.0163 

Min 0.0034 0.0133 0.0027 0.0050 

Mean 0.0549 0.0461 0.0088 0.0086 

RMSE 0.0010 0.0010 0.0010 0.0019 

 

 


