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Dynamics of agricultural land systems in western Mediterranean areas:
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Highlights

- We propose an data driven procedure to extract useful information from a huge volume of multivariate agricultural census data (2000

and 2010).

- The resulting main clusters have been interpreted in terms of agricultural land systems characterizing the Mediterranean areas.
- Transitions reveal a reduction in agricultural land use, increase in utilized agricultural and irrigated area.
- The spatial distribution of agricultural land systems typologies in the geographical space has finally been mapped and and discussed.

Abstract

In the present study, we implemented an unsupervised learn-
ing procedure, a self-organizing map (SOM), for characterizing
the main agricultural land systems (ALS)
Mediterranean areas. Input data derived from national agricultural
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censuses of two periods (2000 and 2010) at the municipality level.
The SOM allowed us to aggregate the items into clusters based on
the proximity between the associated input variables. The main
clusters were then mapped back to the geographical space and
interpreted in terms of ASL typologies. The main ALS from the
census 2000 included one permanent grassland system with exten-
sive farming; two arable land systems, corresponding to winter
and summer crops; and two permanent cropland systems, relatable
to intensively cultivated or marginal areas. The ALS from the cen-
sus 2010 included only one arable land system with a non-inten-
sive use of irrigation; two permanent cropland systems similar to
those found in 2000; one more extensive permanent grassland sys-
tem; and a mixed system characterized by permanent grassland
and arable land. In summary, the main trends emerging from the
transitions between the two censuses periods were: i) a reduction
in agricultural land use; ii) an increase in utilized agricultural and
irrigated area; iii) a contraction in arable land and permanent
grassland. Using a data-driven approach such as SOM allowed us
to discover hidden patterns in the input census data. Therefore, the
prevalent agricultural typologies characterising the ALS in the two
analysed periods resulted to be shaped by the reality of the sur-
veyed area solely, with regard to its agronomic assessment.

Introduction

Land systems are the result of interactions between humans
and the natural environment (Verburg ez al., 2015), regarded as key
tools for providing solutions to sustainable development and to
global changes (Verburg et al., 2013). In particular, agricultural
land systems (ALS) represent agricultural systems with land as the
core, involving all the humans’ activities and outcomes of the agri-
cultural land (Li et al., 2023). Such ALS are dynamic and complex
social systems whose core function is to ensure human livelihood
and food security (Viana et al., 2022b). During the last decades, the
interest in ALS dynamics has been rising in Europe (Rega et al.,
2020) and especially in Mediterranean areas (Bajocco et al., 2012;
Debolini et al., 2013; Marraccini et al., 2015; Malek and Verburg,
2017; Tonini et al., 2018). The capability of representing and inter-
preting changes in ALS is important to: i) identify the driving
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forces acting there (Bonet, 2004; Sluiter and De Jong, 2007; Levers
et al., 2018); ii) assess changes in land degradation and ecosystem
services provisioning (Schroter et al., 2005; Symeonakis et al.,
2007; Young et al., 2007; Debolini et al., 2013; DrakeDrake NA,
2014); iii) evaluate the effects of the Common Agriculture Policy
(CAP) (van Vliet et al., 2015; Huber et al., 2018; Rega et al., 2020).

Analyses of changes in European ALS revealed two main
trends (Silvestri et al., 2012; Marraccini et al., 2015; Levers et al.,
2018). Firstly, we could observe a reduction in agricultural land
use with a contraction of cultivated land under the action of differ-
ent driving forces such as urbanization, farmland abandonment,
and afforestation. Secondly, we assisted to a general trend towards
the adoption of intensive farming practices, as demonstrated by the
biodiversity loss in different agroecosystems and by the environ-
mental contamination due to agrochemical use. These two dynam-
ics involve agricultural districts characterized by different pedo-
climatic and agronomic conditions, but also by distinctive popula-
tion settlement patterns (Bajocco et al., 2012). For instance, agri-
culture declined in hilly lands and in internal marginal areas
(inland depopulation), while cultivated lands in the coastal and
suburban areas tended to increase their productivity to satisfy a
growing demand for food (littoralisation and megalopolis). All
these changes often coexist within quite large areas and determine
a complex set of patterns and trajectories that can be better under-
stood by assuming some simplification in ALS definition
(Marraccini et al. 2015; Debolini ef al., 2018).

ALS are complex systems resulting from the action of many
different scale-dependent factors that interact in space and in time
determining the conditions of land cover (LC) and land use (LU)
detectable over cultivated lands (van Asselen and Verburg, 2012;
Levers et al., 2018; Viana et al., 2022). Specifically, LC refers to
the surface cover on the ground (crops, natural vegetation, hydrog-
raphy, and human structures) and can be detected and mapped by
using different data sources (remote sensing, aerial imagery, cen-
sus data, field scouting) (Jansen and Gregorio, 2002). Conversely,
LU concerns the purposes pursued by humans in the exploitation
of land (Lambin et al., 2006) and its detection involves both base-
line mapping and subsequent surveys. The spatial pattern and the
intensity of the LU are the two poles on which the analysis of ALS
is based at a broad-scale level (Verburg and Overmars, 2009;
Lambin and Meyfroidt, 2011), allowing discrimination between
different cropping production models.

In the agricultural context, LU evaluation should also include
the intensity of farming practices (Verburg and Overmars, 2009),
defined as a multidimensional factor involving three different
aspects: 1) use of agricultural inputs (tillage, fertilisation, irriga-
tion); ii) outputs produced (yields); and iii) changes in land system
properties (non-marketed ecosystem services) (Erb et al., 2013;
Vaclavik et al., 2013). In the absence of this information, attempts
to integrate different data sources can produce inaccuracies due to
their inconsistencies (Malek and Verburg, 2017). Therefore,
although several authors underlined the importance of including
LU intensity in ALS evaluation (Erb et al., 2013; Murray-Rust et
al.,2014; Jepsen et al., 2015; Estel et al., 2016), many studies sim-
ply consider the LC changes as a valid proxy (Hill ef al., 2008;
Hansen et al., 2013; Stellmes et al., 2013; Estel et al., 2015;
Kuemmerle et al., 2015). Moreover, the few existing papers that
agree to adopt a holistic approach, are often restricted in terms of
the spatial (Estel et al., 2015) or temporal dimensions (van Asselen
and Verburg, 2012; Vaclavik et al., 2013; Levers et al., 2018).

To analyze land system dynamics, it is thus necessary to reduce
the complexity of the input information to a few typologies easier
to manage. The definition of these typologies can be accomplished
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by using techniques of clustering able to group similar observa-
tions into the same cluster and to maximise the among-clusters dis-
similarity (van der Zanden et al., 2016). The cluster analysis meth-
ods are based on two types of approaches: bottom-up (e.g., hierar-
chical agglomerative clustering) and top-down (e.g., hierarchical
divisive clustering). In both cases, a threshold, which is normally
based on expert evaluations, needs to be chosen to cut the dendro-
gram and fix the final number of clusters. Among the most popular
data-driven clustering techniques, K-means is a simple and fast
algorithm aiming to partition data points into K clusters by mini-
mizing the sum of squared distances between each item and its
assigned centroid (MacQueen, 1967; Lloyd, 1982). The drawback
of K-means clustering is that it is highly sensitive to the initial seed
selection of the cluster centers (Khan, 2012).

In a recent study, a new typology was defined to represent the
composition, spatial structure, and management intensity of agri-
cultural landscapes in Europe, based on a data driven algorithm
relying on machine learning (van der Zanden et al., 2016).
Although these sophisticated methodological approaches have
been available for some years, their use in ALS analysis is still
scarce. Machine learning algorithms (such as artificial neural net-
works, support vector machine, and decision trees) allow
researchers to overcome some constraints posed by the use of more
classical deterministic approaches to discover pattern in environ-
mental datasets (Kanevski ef al., 2009). In particular, the self-orga-
nizing map (SOM) (Kohonen, 2001) performs well in identifying
clusters from a multivariate dataset based only on the distance
between the input variables. The algorithm SOM is designed as an
unsupervised competitive learning neural network allowing the
representation of a high-dimensional dataset as a two-dimensional
discretized pattern. Overall, SOM is very efficient in terms of data
visualization (Vesanto, 1999) as it can provide additional output-
maps to support the interpretation of the results.

To detect ALS structures and explore the complex interactions
between the variables involved, new tools need to be adopted. To
this end, in the present study, we implemented a data-driven proce-
dure based on SOM followed by hierarchical clustering to aggregate
the mapped units into a lower number of well-defined pattern struc-
tures, representing the main clusters. Input data came from the offi-
cial national agricultural censuses of Portugal, Spain, France, and
Italy, and all information used was referred to the municipality level.
The obtained clusters have been interpreted in terms of ALS charac-
terizing the Western Mediterranean areas over two census periods
(2000 and 2010). Finally, the changes that occurred between the two
investigated periods have been analyzed and discussed in terms of
emerging trend-lines in response to driving forces acting at large
scale (e.g., CAP, human migration, climate changes).

Materials and Methods

The study domain

In the Mediterranean area, environmental (soil nature, orogra-
phy, climate), biological (high level of plant biodiversity and suit-
able crops) and historical (traditional food production, eating
habits) conditions interact with each other to determine a large
variety of agricultural systems with a fast-changing dynamics
(Debolini et al., 2018). In the present work, the studied domain has
been limited to the four western Mediterranean countries that have
similar socio-economic conditions: Portugal, Spain, France, and
Italy (Abu Hammad and Tumeizi, 2012). In this way, we aim to
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detect and characterize ALS shaped mainly by biophysical factors,
and to stem the effect of heterogeneous anthropogenic factors.

The boundary of the study area was selected according to the
Natura 2000-Biogeographical Mediterranean Region, and included
almost the entire territory of Portugal (95% of the national surface)
and Spain (90%), about half of Italy (56%), and a small portion of
France (11%) (Figure 1). The total surveyed area amounted to
78.151 million of hectares and included about 80 million inhabi-
tants (just over 40% of the total population of the four countries).
We restricted the analysis to the two last agriculture censuses avail-
able at the time, which are 1999 and 2009 for Spain and Portugal,
2000 and 2010 for France and Italy (hereinafter all referred to as
“census 2000 and “census 2010”).

The agricultural census datasets

The variables analyzed in the present study (Table 1) come
from the national agricultural censuses datasets. All data used are

referred to the lowest level of local administrative unit (LAU2,
according to the Eurostat classification) corresponding to the
municipality. By this way, we intended to preserve, as far as possi-
ble, the variety of the input information and the regional character-
ization of the entire area.

Three of the selected agronomic variables are closely related to
the land use [total agricultural area (TAA), utilized agricultural
area (UAA), and irrigated area (IA)], while the other three are
related to the land cover [arable lands (AL), permanent crops (PC),
and permanent grassland, (PG)]. All these variables are in accor-
dance with the definitions given by the Eurostat Agriculture
Glossary (Eurostat, 2023).

The final database consisted of 16,580 records (total number of
municipalities) and 6 fields (corresponding to the six variables
considered). Its consistency was checked by verifying the fulfil-
ment of a series of irrefutable conditions such as: TAA>UAA,
UAA>IA, UAA>(AL+PC+PG).

Legend
[ Study area - Regions

[ | Countries

Geographical Coordinate System
Datum: ETRS 89
Source:Eurostat Regions

Figure 1. The western Mediterranean areas analysed in the present study (Eurostat).

Table 1. The variables used in the present study. “Code,” indicates the original values coming from national agricultural census data;

“Code” indicates the values after normalization.

Variable Code, Normalization Code
Total area of municipality TA, - -
Total agricultural area TAA, TAAWTA, TAA
Utilized agricultural area UAA, UAAY/TAA, UAA
Irrigated area 1A, TA/UAA, 1A
Arable land AL, ALy/UAA, AL
Permanent crops PC, PCy/UAA, PC
Permanent grassland PGy PGy/UAA, PG
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Discrepancies in the size of the municipalities for the four
countries could affect the homogeneity of ground resolution in the
analysis, but these differences have been considered acceptable for
the aim the present study (Rabelo et al., 2021). The agronomic
variables were normalized to the range [0, 1] by dividing their
original value by the value of the variable they belong to (Table 1).
Finally, as no homogeneous information was available from the
national agricultural census regarding the use of agricultural
inputs, the outputs produced, or changes in land system properties,
we considered the first three variables (TAA, UAA, and [A) as a
proxy for the evaluation of the LU intensity. Indeed, these vari-
ables provide information about the expansion reached by agricul-
tural land use (TAA), the rate of exploitation of farmland (UAA),
and the input level used (IA). The main descriptive statistics calcu-
lated for the six variables are reported in supplementary materials
(Supplementary Tables 1 and 2). Further details on the database
structure can be find in two previous works (Villani et al., 2019;
Rabelo et al., 2021).

Data analysis: two-step clustering

A SOM (Kohonen, 1982) is an unsupervised machine learning
algorithm based on an artificial neural network. Self-organization is
defined as the process of partitioning the output layer neurons to
correspond to individual patterns or clusters, based on the heteroge-
neous observations in the input layers (McCulloch and Pitts, 1943).
In other words, a self-organizing network is a competitive learning
neural network with an input layer of observations and an output
layer of neurons (called units) resulting from non-linear functions.

In SOM, the proximity of the output clusters reflects the similar-
ity of the corresponding input observations. The main idea is to pro-
ject the high-dimensional input space, where each dimension corre-
sponds to an input variable, in a lower-dimensional output space.
The output space is organized on a grid made up of regular units with
a fixed number of neighborhoods: four in a rectangular grid or six in
a hexagonal grid. Each unit contains a vector of weights of the same
dimension as the input vectors. At the end of the process, each obser-
vation from the input space is associated with a unit of the SOM
grid. Depending on the size of the grid, one unit can include one or
more input observations. An important characteristic of SOM is the
preservation of the topological structure (i.e., the preservation of the
proximity between the input observations). Finally, hierarchical
clustering can be performed to isolate groups of input vectors char-
acterized by similar values of the input variables. This second step
takes the SOM-units as input and group them into the desired num-
ber of clusters that, in our case, will finally represent the ALS typolo-
gies derived from the census data analysis.

Self-organizing maps

The training process associated with SOM consists of several
steps and many iterations (Kohonen, 1982). First, a so-called code-
book vector (W;) is assigned to every unit of the SOM grid, ran-
domly initializing the unit’s weights (w;;). Then an input vector (I;)
is chosen at random from the input dataset and its distance to every
unit is computed to evaluate the closest one, defined as the “best-
matching unit” (BMU). The BMU’s neighboring units included
within a certain distance radius are then selected. The radius starts
large and diminishes at each iteration, so that in the end only the
BMU are selected. The topological structure of the SOM grid is
preserved thanks to the fact that BMU’s neighbouring units result in
similar codebook vectors. This is achieved by updating in the same
way the BMU together with its neighbouring units, as follows:

W([H):W["’(X(I-Wt) (1)
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This means that the updated weighted vector (W) for a
given output unit gains at each iteration o-times the value of the
difference between the input vector (I) and the previous weight
vector (W), where the learning rate o indicates the amount of
change. These training’s steps are repeated for several iterations.
The number of iterations must be of sufficient size to ensure that
the SOM grid eventually settles into a map of stable zones. At the
end of the SOM process, each unit of the grid is associated to a
codebook vector, representing the local means of the input vectors.
Similar observations end up being mapped close together.

Clustering outputs

The main SOM outputs, which are generally mapped for visu-
alization purposes, are the node counts, the neighborhood dis-
tances, and the heatmaps (Wehrens and Buydens, 2007). The node
counts map informs about the number of input vectors falling
inside each output unit. The neighborhood distance plot shows the
distance between each unit and its neighborhoods. The heatmaps
show the distribution of each input variable, associated with each
input vector, across the SOM grid; heatmaps are a useful tool to
visually explore the relationship between the input variables.

In the second clustering step, the codebooks resulting from
SOM can be grouped using a hierarchical clustering method to
form the final partitioning, where similar units are aggregated into
single clusters. The process starts by assigning each observation to
a single cluster; the most similar clusters are then joined together
based on the Euclidean distance between them. This step is repeat-
ed until a pre-fixed number of clusters is reached. At the end of the
entire process, including SOM and hierarchical clustering, clusters
were assigned back to the single observations in the original
dataset and mapped using a geographical information system
(GIS), allowing the detection and visualization of the main clusters
over the geographic space.

Quality assessment and parameters

The quality of the SOM grid can be assessed as the mean dis-
tance value of each input vector, mapped to a particular unit, to the
codebook vector of that unit: the smaller the distances, the better
the input data are represented by the codebook vectors. The aver-
age value over the entire grid, called quantization error (QE), is
considered an indicator of the overall quality of the SOM grid.
SOM’s parameters were estimated via a trial-and-error process,
seeking to minimize the QE. These resulted in the following val-
ues: 500 iterations; o declining linearly from 0.05 to 0.01; starting
radius covering 2/3 of all unit-to-unit distances; size of the SOM
grid equals to 50 by 30 (horizontal / vertical) units with hexagonal
topology. The number of the final main clusters was set to five,
established by examining the plot of the within cluster sum of
squares obtained using k-means. This choice is supported by the
data, including six variables, and by the aim of the present study,
that is to discover clusters characterized by similar agricultural
systems in terms of variable distribution.

Computations were performed using the R free software envi-
ronment; SOM was performed using the Kohonen package for
supervised and unsupervised SOM (Wehrens and Kruisselbrink,
2018). The GIS software ArcMap (v. 10.8 - ESRI) was used to
elaborate the final maps.

Quantitative assessment of the main clusters

To characterize the five final clusters in terms of ALS, and ver-
ify their consistency at the global level, we evaluated the distribu-
tion of each variable within the revealed clusters using box plots.
These graphics are routinely used to display a dataset based on the
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five-number summary statistics: minimum, maximum, sample
median, first quartile (which splits off the lowest 25% of data from
the highest 75%), and third quartiles (which splits oft the highest
25% of data from the lowest 75%). The statistical descriptive val-
ues summarised are available in Supplementary Tables 3 and 4.

In addition, for every cluster, its centroid was computed as the
average of the values of each unit (i.e., the municipalities) belong-
ing to that cluster for each of the six variables. The dispersion of
the units belonging to each cluster was calculated as an average of
the Euclidean distances of each municipality from its centroid
[within distance (WD)]. Moreover, we evaluated the Euclidean
distance between clusters detected in the two census periods to
quantify the changes that had occurred during the decade time-
span 2000-2010 [decade distance (DD)].

Results and Discussion
Self-organizing map outputs and clustering detection

Several parameters and configurations of the SOM grid were
implemented and compared. The grid size of 50 by 30 units with

Arable land

hexagonal topology gave the smallest QE, equals to 0.010 and
0.012 for the 2000 and 2010 censuses, respectively. The resulting
neighborhood distance maps are reported in Supplementary Figure
1. The node counts maps, which plot the number of input vectors
falling inside each output unit, were relatively uniform for both
periods, with most of the units including between 5 and 20 obser-
vations and no empty units (Supplementary Figure 2). This indi-
cates that the size of the SOM grid allowed a proper representation
of the input data.

The heatmaps are the most meaningful visualization tool of
SOM. A heatmap displays the pattern distribution of each variable:
how it is distributed along the SOM grid and how values change in
space. Visualized side by side, heatmaps show a picture of the differ-
ent areas and their characteristics. Indeed, the position of the individ-
ual units in the SOM grid is the same for all the heatmaps arising
from the same input dataset; what changes is the represented variable.
This way, it is possible to explore the level of correlation that links
one or more variables. Heatmaps for both the census periods (Figures
2 and 3) showed a negative correlation in the distribution of the LC-
related variables: AL, PC, and PG. Less strict, but still noticeable,
were the positive correlations between some LU-related variables,
such as the TAA and the UAA, or between the UAA and the IA. A
negative correlation can be observed between the 1A and the PG.

Irrigated aroa

Permanent grassland

Figure 2. Heatmaps showing the pattern distribution of the agronomic variables within the self-organizing map grid for census 2000. The
gradient color scale represents the values of the normalized input variables (blue=low values, green=medium values, red=high values).

Arable land

Irigated area

Figure 3. Heatmaps showing the pattern distribution of the agronomic variables within the self-organizing map grid for census 2010. The
gradient color scale represents the values of the normalized input variables (blue=low values, green=medium values, red=high values).
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The codebook map seeks to visualize all the variables on the
same diagram. For a high-dimensional space, especially with many
units as it is the case in the present study, this representation is
quite unsuitable. Nevertheless, the codebook map turned out to be
useful in exploring the uniformity of the final main clusters per-
formed using hierarchical clustering to aggregate together similar
SOM units in the second step of the analysis (Supplementary
Figures 3 and 4).

The final five clusters detected for each census period are

referred to as Cn, with n ranging from 1 to 5 (C1, C2, ...) for the
census 2000, and from 6 to 10 (C6, C7, ...) for the census 2010. It
is worth specifying that SOM was computed independently for the
two censuses. Comparison between the clusters was made a poste-
riori, highlighting similarities and differences that naturally
emerged between them. The main structures revealed by each clus-
ter can be analysed by using the box plots of the distribution of the
variables (Figures 4 and 5). The median values, expressed as a per-
centage, are considered here to characterize the clusters. Looking
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at the clusters from census 2000 (Figure 4), C1 was mainly devot-
ed to permanent grass cultivation (median value of PG equal to
81%). The value of total agricultural area (TAA=61%) was similar
for all the clusters, but the incidence of the cultivated area
(UAA=76%) was slightly lower. The percentage of irrigated area
was the lowest of all clusters (IA~0), and the dispersion of the
municipalities was rather contained here (WD=0.43) (Table 2).

The following two clusters (C2 and C4) were both dominated
by arable land (AL=78% and 81%, respectively), but C2 showed a
lower value for the irrigated land (IA=1%), whereas C4 registered
the highest value among all clusters (IA=66%). The incidence of
total and utilized agricultural area were similar for these two clus-
ters (TAA=69% and 57% for C2 and C4, respectively, and
UAA=85% and 93%, respectively). On average, the municipalities
belonging to these clusters were close to their centroids (WD=0.48
and 0.58 for C2 and C4, respectively).

The remaining two clusters (C3 and C5) were both devoted to
permanent crop cultivation, but with a different level of incidence
(PC=54% and 80%, respectively). These two clusters differed
remarkably in terms of total agricultural area (TAA=29% and 61%
for C3 and CS5, respectively), utilized agricultural area (UAA=59%
and 84%, respectively) and average distance from their centroids
(WD=1.20 and 0.45, respectively). Finally, the use of irrigation
resulted higher in C5 that in C3 (IA = 8% vs. 1%). As regards the
global assessment of the municipalities involved in each cluster
(Table 2), C2 was the cluster that grouped the highest number of
administrative units (6237, equal to 38% of the total) and covered
the largest surface (32.776 M ha, equal to 42% of the entire studied
domain), followed by C1 with 27% of municipalities and 32% of
surface. The sizes of C3 and C5 were similar (about 15-17% of
municipalities, and 10-13% of surface), whereas C4 was the small-
est cluster with just 3% of municipalities and surface.

Turning to the results from census 2010 (Figure 5), arable land
predominated over the other LC-related variables only in one clus-
ter (C6, AL=84%). This cluster showed an intermediate value of

total agricultural area (TAA=53%) and the highest value of utilized
agricultural area (UAA=91%). The use of irrigation was limited
(IA=15%) and the dispersion of municipalities within this cluster
was quite contained (WD=0.58) (Table 3). The largest land cover
variable for the following cluster (C7) was PC (71%), while the
values of other variables (TAA=59%, UAA=87%, 1A=11%, and
WD=0.46) have a similar distribution as in C6. The cluster C8 was
characterized by the highest value of TAA (71%) and the lowest
value of IA (1%), whereas the value of WD was close to those of
the previous clusters (0.48). Arable land and permanent grassland
have a similar distribution here (AL=34%, PG=29%), while per-
manent crops cover a small area (PC=3%).

The last two clusters (C9 and C10) were both associated with
avery low level of land devoted to agricultural use (TAA=26% and
24%, respectively) and a limited rate of cultivated surfaces
(UAA=78% and 72%, respectively). However, they showed a dif-
ferent type and level of crop specialization. C9 was mainly devoted
to permanent grass cultivation (PG=55%), whereas permanent
cropland prevailed in C10 (PC=77%). Finally, the dispersion of
municipalities around their respective centroids was very different
in these two clusters (WD=1.24 and 0.38 for C9 and C10, respec-
tively). As regards the size of the clusters (Table 3), we found a dif-
ferent pattern in 2010 compared to the previous census period.
Globally, the differences among clusters were limited in terms of
the municipality’s number, ranging from 13% (C10) to 27% (C6
and C8). Instead, a major variability was observed at the level of
the occupied surface, whose values passed from 9% (C10) to 39%
(C8). For instance, C8 was the most widespread cluster (30.115 M
ha), but C6, showed the highest number of municipalities (4462)
although it covered only 18.458 M ha.

From clusters to agricultural land systems

On the basis of the results of the clustering process, we propose
an agronomic interpretation of final cluster in terms of ALS
typologies by using the median values of the six variables consid-

Table 2. Within distance (WD), number of municipalities (n) and relative percentage (%), total surface (as millions of hectares, M ha)
and relative percentage (%) relatable to each cluster in census 2000 (C1 to C5).

Clusters WD Number Surface

n % M ha (%)
Cl1 0.43 4329 26.6 24.737 31.7
Cc2 0.48 6237 38.3 32.776 41.9
C3 1.20 2418 14.9 8.022 10.3
C4 0.58 550 34 2.187 2.8
(65} 0.45 2735 16.8 10.430 13.3

Table 3. Within distance (WD), number of municipalities (n) and relative percentage (%), total surface (as millions of hectares, M ha) and
relative percentage (%) relatable to each cluster in census 2010 (C6 to C10).

Clusters WD Number Surface

n % M ha (%)
Co6 0.58 4462 27.4 18.458 23.6
C7 0.46 2366 14.5 10.850 13.9
C8 0.48 4434 27.3 30.115 38.5
Cc9 1.24 2867 17.6 12.058 15.4
C10 0.38 2140 13.2 6.670 8.5

OPEN aACCESS

[Italian Journal of Agronomy 2023; 18:2199]



ered in this study. The correspondence between each cluster and
the ALS typologies has been summarized in Table 4.

The ALS resulting from census 2000 was characterized by a
diversified productive vocation: permanent grassland (C1), arable
land (C2 and C4), and permanent cropland (C3 and C5). The first
cluster (C1) can be related to extensive farming, as revealed by the
quite high value of the TAA, but with a rather contained rate of
UAA and by the low value of IA. The two systems mainly special-
ized in arable land (C2 and C4) differed from each other in terms
of the use of irrigation, denoting a different level of cropping inten-
sity. Indeed, the low value of IA in C2 can be mainly related to the
cultivation of winter cereals, whereas C4 can be ascribable to spe-
cialized summer cereals and industrial crops, which usually require
a higher use of inputs. The second cluster (C2) showed a higher
value of TAA, but a lower of UAA, which indicates less profitabil-
ity in land cultivation.

In regard to the two permanent crop-based ALS, distinctions
can be drawn in relation to: i) the different level of specialization
(PC value was lower in C3 than in C5); ii) the incidence of agricul-
tural use of land (TAA in C3 was about half than in C5, and UAA
was the lowest of all cluster); iii) the different use of irrigation
(much lower in C3 than in CS5). Therefore, C5 can be linked to high-
specialized vineyards, olive groves and orchards located in inten-
sively cultivated areas. On the other hand, C3 can be related to
mixed systems where vineyards, olive and other fruit trees are cou-
pled with herbaceous annual crops, characteristic of marginal areas
where agriculture is declining, and the use of irrigation is very lim-
ited. Moreover, the remaining surface [RS=UAA - (AL+PG+PC)],
which can be assimilated to temporary non-cultivated areas, was
very small and almost negligible for all 2000 clusters.

In 2010, the productive vocation of ALS was changed. Only
one ALS was specialized in arable lands (C6) and another one in
permanent grassland (C9), two ASL (C7 and C10), in PC, and the
last one (C8) showed an almost equal interest in AL and PG. To
draw a parallel with clusters detected in the previous census peri-
od, Cl1 is close to C9, as both represent an ALS typology based on
permanent grassland. In the latest period, C9 showed a remarkable
reduction in TAA and a more moderate level of specialization
(lower PG), whereas the value of UAA was comparable with C1.
This situation could indicate the abandonment of agricultural lands
in favor of other land uses (such as afforestation, re-naturalization,
or urbanization). Only one cluster from census 2010, C6, showed
a clear prevalence of arable land with non-intensive water use,

cepress

which defines a specialized middle-intensive ALS suffering from
the competition with non-agricultural land uses, as also attested by
a quite low value of TAA and the high rate of cultivated land. In
this case, it was not possible to distinguish between a prevalence
of autumn or spring crops, while the intermediate value of IA sug-
gested that this typology of ALS included both crop types.

The two permanent crop-based ALS revealed in 2010 (C7 and
C10) were characterized by similar high levels of incidence of PC.
One cluster, C10, also showed a very limited agricultural land use
(low value of TAA), and a less intensive cultivation rate (UAA)
compared to C7. Therefore, we can relate C10 to marginal areas,
where the lack of profitability determined a partial abandonment of
agricultural lands and low utilization of the available agricultural
land. The C7 was characterized by more favorable conditions both
for the total and for the utilized agricultural area. In addition, the
non-negligible rate of arable land suggests the adoption by farmers
of a more diversified strategy of production.

The balanced incidence of agricultural land and permanent
grassland characterized in C8 probably resulted from the conver-
sion of arable land-based systems towards less intensive cultiva-
tion practices. The limited use of irrigation here could confirm this
hypothesis. This ALS does not seem to suffer the competition of
other land uses, and showed a fairly high rate of cultivated land
(UAA), but the transition towards less intensive cropping systems
could be the signal of de-structuring processes anticipating poten-
tial abandonment. Two 2010 clusters (C8 and C9) showed a non-
negligible rate of non-classified land use (RS) that could be used
for self-consumption (kitchen garden) or be temporarily unculti-
vated. In any case, the expansion of RS represents a signal of a
decreasing of professional engagement of farmers in agricultural
land use which, when coupled with the low value of the agricultur-
al land (TAA) as in C9, can indicate a regression of agricultural
activity.

Agronomic interpretation of the transitions

In 2010, most of the municipalities have transitioned towards
the clusters more similar to the starting ones, i.e., those showing
the lowest value of DD, as reported in Table 5.

The main transitions recorded (primary and secondary) are
drawn in the Figure 6, while the details relating to all the transi-
tions that occurred between the clusters of 2000 and those of 2010
are reported in Supplementary Tables 5 and 6.

The extensive grassland systems (C1) moved towards two dif-

Table 4. The correspondence between each cluster and the agricultural land system typologies for the two census periods (C1 to C5 for

census 2000; C6 to C10 for census 2010).

Cluster Agricultural land system

Cl Permanent grassland, extensive (medium TAA and UAA and very low 1A)

C2 Arable land (winter cereals), less intensive than C4 (low IA)

C3 Mixed systems (PC and AL), non-intensive (very low TAA and UAA)

C4 Arable land (summer cereals and industrial crops), more intensive than C2 (high IA)

Cs Specialised permanent crops, rather intensive (high UAA and medium IA)

Co Arable land (summer and winter crops), medium-intensive (low TAA, high UAA, medium IA)
Cc7 Prevalence of permanent crop, rather intensive (high TAA, UAA and IA)

C8 Mixed systems (PG and AL), quite intensive (high TAA but low [A)

C9 Permanent grassland, abandonment (very low TAA and quite low UAA)

C10 Prevalence of permanent crops, marginal areas (very low TAA and quite low UAA)

TAA, total agricultural area; UAA, utilized agricultural area; IA, irrigated area; PC, permanent crops; AL, arable lands; PG, permanent grassland.
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ferent ALS that can represent two successive stages in marginali-
sation and land abandonment processes. The majority of C1 (61%
in surface) passed to a PG-AL mix systems (C8) with a high inci-
dence of RS, but with a still large agricultural use of land. About
one-third of the surface passed to a more extensive PG-based sys-
tem (C9), largely characterized by the land abandonment. As
regards the less intensive arable land systems (C2), part of the
municipalities (involving 46% of the surface) passed to the AL-
based system (C6) characterized by a lower land agricultural use,
but a higher level of cultivation intensity. A significant number of
municipalities (involving 42% of the surface) changed towards
marginalization process, contributing to the establishment of the
already mentioned C8 system. The highly intensive arable-land-
based systems (C4) lost their specificity in 2010 and converged
essentially to C6 systems (75% in surface). The less specialized
PC-based system (C3) mostly (45% in surface) passed to a bit
more intensive forms of cultivation (C10) while maintaining its
original productive vocation, whereas the remaining surface of C3
resulted fragmented among all the other clusters. Finally, the more
specialized PC-based systems (C5) largely migrated (67% in sur-
face) towards the new PC system (C7) characterized by the same
intensity of cultivation, but a lower level of specialization, due to
the contribution of AL coming from C4.

These transitions allowed us to identify the following major
temporal trends: 1) a reduction of agricultural land use (attested by
a global decrease in the mean TAA vale); ii) an increase in UAA
and [A; iii) a contraction of arable land (decrease in AL) and per-
manent grassland (decrease in PG). These results are the conse-
quences of two different and partially contraposed tendencies. In
the coastal and suburban areas, the competition with different land
uses reduced the availability of surface for agriculture, because of
urbanization, littoralization and megalopolis developments. On the
other side, the loss of profitability eroded the agricultural surface
from more marginal areas in favor of afforestation, re-naturaliza-
tion or land abandonment. Where agriculture was not undermined
by other land use practices, and where an economical convenience
was retained, the rate of cultivated land increased, as attested by
increasing values of UAA, partially balancing the effects of the
reduction of TAA. The increase of IA could be related to the con-
trasting effects of global warming, but it was also due to the aim of
pursuing profitability by intensifying farming practices, where
possible.

Although the examination of the changes in ALS with respect
to the CAP is not the subject of this study, a few considerations can
be made. As a matter of fact, some of the dynamics highlighted
here risk being worsened by the measures recently proposed by the
European Union (EU). For instance, the decision to convert 10%
of UAA in favor of non-productive areas (EU Biodiversity strategy
for 2030, 2021) may further increase the shortage of agricultural
areas and arable lands. Moreover, the goal pursued to limit the use

of fertilizers (-20%) and pesticides (-50%) (A Farm to Fork strate-
gy, 2020) could reduce the crop yields and exacerbate the food
dependence of EU. Conversely, measures that implemented mea-
sures for grassland conservation could reverse the trend of PG
reduction observed in our study.

Spatial distribution of agricultural land systems typolo-
gies in western Mediterranean areas

The five ALS typologies resulting from the two-step clustering
process were finally assigned back to the single entities (munici-
palities) in the original dataset and mapped under a GIS environ-
ment. This allowed us to visualize the ALS patterns in the two cen-
sus periods and to evaluate the coherence of the results obtained
with the regional geo-morphological and climatic conditions.

The spatial pattern distribution of ALS in the first census peri-
od (Figure 7) was characterized by rather large patches slightly
fragmented. The permanent grassland-based system (C1) corre-
sponds mainly to the mountainous and hilly areas of Castilla y
Leon, Estremadura and Andalucia (Spain), the sub-alpine areas of
Provence Alpes - Cote d’Azur, Auvergne Rhone Alpes, the sub-
Pyrenean areas of Languedoc and most of them are in Corse
(France), and in Sardegna, as well as to some internal areas of
Apennines (Lazio, Abruzzo and Umbria) and the reliefs of Liguria
(Italy). The less intensive arable land system (C2) covered the
main alluvial plains created by the deposition of sediments from
the rivers within the study area (Duero, Guadiana in Spain and
Portugal; Segura, Guadalquivir and Ebro in Spain; Arno, Tevere,
Basento in Italy). Conversely, the most intensive arable land sys-
tem (C4) was concentred in relatively small districts characterized

& &

e
085
c10 '

75

rate Rate = percentage of involved surface l
oo DD = decade distance =
main secondary
transition transition

Figure 6. The scheme of transition among clusters from the two
census periods (C1-C5 for 2010 and C6-C10 for 2010). The thick-
ness of the manifolds is correlated to the rate of surface involved.

Table 5. Cross-tabulation showing the decade distance between centroids belonging to the two census periods (C1-C5 for 2000, and C6-

C10 for 2010).

Clusters Cé6 C7 C8 C9 (& (1)
Cl 1.00 1.00 0.47% 0.40%* 1.06
C2 0.24* 0.83 0.49 0.84 1.00
C3 0.82 0.44 0.71 0.62 0.26*
C4 0.42%* 0.85 0.85 1.04 1.05
Cs 0.93 0.11* 0.81 0.88 0.38

*The cells with the lower value represent the main transition.
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by very specific and narrow conditions, such as Lleida and Almeria Regarding the second period of investigation (Figure 8), the
(Spain), Salerno (Italy). The more specialized permanent cropland distribution of the spatial pattern of the clusters was generally
system (C5) was dislocated in the traditional districts of olive trees more fragmented. It is evident that many municipalities character-
and vineyards such as Norte (Portugal), Andalusia, Région de ized by low-intensive permanent-grass (C1) and arable land (C2)

Murcha, Valenciana and Catalufia (Spain), Languedoc in France, systems converged in low-intensive mixed crop systems (C8),
Toscana, Puglia and Sicilia (Italy). Finally, the less specialized per- especially in Extremadura, Castilla La Mancha and Castilla y Leon
manent cropland system (C3) was found in Centro (Portugal), (Spain), in Alantejo (Portugal), and in Toscana, Sicilia, Sardegna
Galicia (Spain), Provence Alpes - Cote d’Azur (France) and in and Basilicata (Italy). The permanent-grass systems (C9) remained
some neighbouring areas to C5. only in Galizia (Spain), Corse and Provence Alpes Cote d’Azur

Legend Geographical Coordinate System
Datum: ETRS89
Cluster 2000 c1 cz2l c: I c+ I cs Source: EUROSTAT Countries

Figure 7. Spatial pattern of agricultural land systems derived from census 2000 (see the text for the description of the clusters).

Geographical Coordinate System
Legend Datum: ETRS89

Figure 8. Spatial pattern of agricultural land systems derived from census 2010 (see the text for the description of the clusters).
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(France), and Liguria and Calabria (Italy).

The arable land-system (C6) maintained its importance in
many regions of Spain (Catalufia, Castilla y Leon and Aragon)
while in Italy its distribution in more fragmented and intermingled
with permanent grassland, characteristic of C8. Most of the areas
devoted to the specialized permanent crop systems in 2000 (C5)
transitioned unaltered to C7 (Norte in Portugal; Andalucia in
Spain; Puglia and some parts of Toscana and Sicilia in Italy). In
some cases, we observed a migration to C10, that is a less intensive
and specialized PC system (Région de Murcia and Valenciana in
Spain; Languedoc in France). A low-intensive permanent crop sys-
tems remain unaltered in different area, like Centro (Portugal),
Provence (France), and Calabria (Italy), where C3 passed to C10.

The quantitative assessment of these transitions revealed that
the observed changes were contained, but not negligible (Table 6).
About 50% of municipalities and the surveyed surface presented
very low or low changes (DD lower than 0.50) and with a limited
dispersion of the municipalities within their cluster (WD equal to
0.38, 0.46, and 0.48 for C10, C7, and CS8, respectively). Greater

changes (DD>0.68) were reached only by few municipalities
(13%) and involved limited surfaces (11%). Intermediate values of
decade distance (between 0.49 and 0.68) represented the most
widespread class by surface involved (39%) and second as number
of municipalities (29%).

Geographically, changes were mainly concentrated in the
southern part of Portugal, in the western part of Spain, in Auvergne
and Rhone Alpes (France), in Sardegna, and the internal areas of
Italy (Figure 9). The areas with higher values of DD were very
small and fragmented, and these dynamics are probably the result
of driving forces acting at a local level. For instance, their proxim-
ity to urbanized areas (such as in the regions of Cordoba, Jaen, and
Tarragona in Spain, or Siracusa and Palermo in Italy) or to alluvial
plains (as the Mouth of Guadalquivir in Spain or the plain of Teria
in Italy) could cause the observed changes.

Our findings are consistent with those of several authors. For
example, Levers ef al. (2018) and Rega et al. (2020) found patterns
in ALS with a similar geographical distribution and characterisa-
tion than ours. In particular, Levers et al. (2018) identified four

Table 6. Classification of the municipalities (number and surface involved, plus the relative percentages) in relation to the decade distance.
Decade distance was calculated for each municipality as the Euclidean distance between the centroids of clusters detected in the two census

periods.
Decade distance Municipalities Surface

n % M ha (%)
Very low (0.21-0.30) 6235 38.3 25.745 329
Low (0.30-0.49) 3248 20.0 13.302 17.0
Intermediate (0.49-0.68) 4666 28.7 30.711 393
High (0.68-0.87) 1472 9.0 5.959 7.6
Very high (0.87-1.06) 648 4.0 2.434 3.1
Total 16269 100.0 78.151 100.0

M ha, millions of hectares.

Legend

Decade Distance

(0.21 - 0.30) | (0.30-0.49)

I ©<o-068) [ 05-08n

Geographical Coordinate System
Datum: ETRS89
Source: EUROSTAT Countries

I 057108

Figure 9. Map representing decade distance in five class intervals. Decade distance was calculated for each municipality as the Euclidean
distance between the centroids of clusters detected in the two census periods.
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main trends: i) yield increase and cropland restriction; ii) forestry
expansion in Mediterranean areas; iii) urbanisation along the cost;
and iv) stable land-use patterns in part of Western Europe. The
detailed maps reported for Spain and Italy by Malek and Verburg
(2017), who used an expert hierarchical classification procedure,
show a similar distribution of ALS even if the number of categories
is higher than in our case. Some analogies in the distribution of
ALS can also be found in the work of van der Zanden et al. (2016),
despite the authors focused on the agricultural landscape, including
additional elements such as the management intensity and avail-
able livestock. Marraccini et al. (2015) underlined the effect of
urbanization around the Mediterranean medium-large cities, with
an increase of urban areas higher than 10% over three-decade peri-
od (1980-2010). Holman et al. (2017) estimated an extensification
and abandonment of agriculture in Mediterranean countries (espe-
cially Spain and Italy) due to climatic changes (heat stress and
drought) as a possible scenario projected for the 2050s. Debolini et
al. (2018), by analyzing 80 papers published in international jour-
nals from 1985 to 2015, confirmed the geographic relationship
existing between land abandonment, mountain areas, urbanization,
and coastal plains.

Conclusions

In the present study, we proposed an unsupervised learning
procedure based on SOM able to extract useful information from a
huge volume of multivariate agricultural census data. The imple-
mented clustering approach led to the aggregation of the munici-
palities into output units on the basis of the proximity among the
variables in the input datasets, derived from the national agricultur-
al censuses of Portugal, Spain, France, and Italy. The units of the
SOM grid were then grouped into five main clusters to form the
final partitioning, which have been interpreted in terms of ALS.

This innovative approach (in the context of this domain of
application), the size of the investigated area, and the scale of
detail of the used input data enabled us to obtain important outputs.
More specifically, the framework adopted allowed us to describe
and detect the spatial pattern of the main ALS typologies, to assess
the contribution of the agronomic variables related to land use and
land cover to each ALS, to identify the main changes that occurred
between the two census periods (2000 and 2010), and to relate
them to local conditions.

The main advantage of using a data-driven approach is that it
allows us to discover hidden patterns in the data, and the resulting
outputs derived from hard information instead of from expert-
based rules. In the present case study, the prevalent agricultural
typologies characterizing the ALS in the two census periods were
shaped by the reality of the surveyed area solely, with regard to its
agronomic assessment.

The reasons that are at the origin of the observed changes and
the impacts that these changes can have on many aspects of human
societies, have briefly been discussed. For instance, the CAP mea-
sures recently proposed by the EU could enhance some of the
observed changes in ALS and mitigate others. The recent trend
toward longer dry periods due to climate change can be invocated
to explain the more fragmented distribution of ALS due to a reduc-
tion of the suitable area for traditional crops and the increase in
irrigation use, both occurring in 2010.

The effects of human migration (littoralisation and megacities)
are evident by examining the spatial distribution of ALS and their
temporal dynamic, even if its range of influence is more limited in

[Italian Journal of Agronomy 2023; 18:2199]
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comparison with a few decades ago. These trends look set to con-
tinue as the pressure of these driving forces will not weaken in the
coming years.

The forthcoming publication of the 2020 agricultural census
will allow us to verify whether the transitions of ALS described
here have persisted or whether new dynamics have occurred.
Ultimately, an analysis of the agronomic and environmental conse-
quences of ALS changes (e.g., soil carbon storage, soil erosion
control, and soil waterproofing due to urban expansion) could pro-
vide valuable information to feed the debate about land-sharing
and land-sparing in Mediterranean areas.
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Online supplementary material

Table S1. The main descriptive statistics calculated for the 6 considered variables on data of the first census date.

Table S2. The main descriptive statistics calculated for the 6 considered variables on data of the first census date.

Table S3. Descriptive statistics of variables within each cluster (census 2000).

Table S4. Descriptive statistics of variables within each cluster (census 2010).

Table S5. The cross-tabulation showing the transitions, in terms of municipality number and percentage, from clusters in 2000 (CI1-C35)
to clusters in 2010 (C6-C10). The cells with a value higher than 30% are highlighted in grey.

Table S6. The cross-tabulation showing the transitions, in terms of surface and percentage, from clusters in 2000 (C1-C5) to clusters in
2010 (C6-C10). The cells with a value higher than 30% are highlighted in grey.

Figure S1. Neighborhood distance maps (census 2000 on the left and census 2010 on the right). Gradient color scales: yellow=Iow,
red=high values.

Figure S2. Node counts maps (census 2000 on the left and census 2010 on the right). Gradient color scales: blue=low, green=medium,
red=high values.

Figure S3. The final five clusters with codebooks for census data 2000.

Figure S4. The final five clusters with codebooks for census data 2010.
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