
Abstract
Studies have shown that the quantification of hail damage is

generally inaccurate and is influenced by the experience of the
field surveyors/technicians. To overcome this problem, the vege-
tation indices retrieved by remote sensing, can be used to get
information about the hail damage. The aim of this work is the
detection of medium-low damages (i.e., between 10 and 30% of
the gross saleable production) using the much-used normalized
difference vegetation index (NDVI) in comparison with alterna-
tive vegetation indices (i.e., ARVI, MCARI, SAVI, MSAVI,
MSAVI2) and their change from pre-event to post-event in five
hailstorms in Lombardy in 2018. Seventy-four overlapping scenes
(10% cloud cover) were collected from the Sentinel-2 in the
spring-summer period of 2018 in the Brescia district (Lombardy).
An unsupervised classification was carried out to automatically
identify the maize fields (grain and silage), testing the change
detection approach by searching for damage by hail and strong
wind in the Lombardy plain of Brescia. A database of 125 field
surveys (average size 4 Ha) after the hailstorm collected from the
insurance service allowed for the selection of the dates on which
the event occurred and provided a proxy of the extent of the dam-
age (in % of the decrease of the yield). Hail and strong wind dam-
ages ranged from 5 to 70%, and they were used for comparison
with the satellite image change detection. The differences in the
vegetation indices obtained by Sentinel 2 before and after the hail-
storm and the insurance assessments of damage after the events
were compared to assess the degree of concordance. The modified
soil-adjusted vegetation index outperformed other vegetation
indices in detecting hail-related damages with the highest accura-
cy (73.3%). On the other hand, the NDVI resulted in scarce per-
formance ranking last of the six indices, with an accuracy of
65.3%. Future research will evaluate how much uncertainty can be
found in the method’s limitations with vegetation indices derived
from satellites, how much is due to errors in estimating damage to
the ground, and how much is due to other causes.
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Highlights
- The discovery rate of damaged fields improved.
- MSAVI outperformed NDVI and other vegetation indices, identifying 73.3% of occurrences.
- Estimation of damage from remote sensing was more accurate for fields severely affected >50%. 
- In low-intensity hail events (<50 canopies affected), the MSAVI provided a detailed picture of the damage across the field. 
- The proposed approach is promising to develop a ‘sampling map’ for detailed on-ground assessment.
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Introduction

Maize cultivation in Italy
With an average total production of around 6.5 million Mg

(range: 6.05-7.07) harvested in an area of 1,030,000 ha (650,000
ha grain; 380,000 maize silage) during the period 2015-2019
(FAOSTAT, 2021; ISTAT, 2021), Italy is one of the leading maize
producers in Europe (EUROSTAT 2021). Around 90% of this total
maize production is concentrated in the Po Valley (Berti et al.,
2019). However, in Italy, maize cultivation has declined over the
last 15 years, primarily due to the relatively low maize grain prices
and high production costs (USDA, 2017). In 2006, the Italian
national institute of Statistics (ISTAT, 2006) estimated a 1,383,000
ha of maize-growing area, of which 1,108,000 ha corresponded to
grain maize and 275,000 ha to silage maize. Despite this recent
decline, Maize harvested for grain still represents a critical compo-
nent of Italian agriculture, with a total estimated economic value of
1074, 1043, and 1126 million EUR in 2018, 2019, and 2020,
respectively, placing Maize as the second most valuable crop in the
country, only after wheat production (European Commission,
2021). 

The impacts of hail events on crops have received little atten-
tion from the agronomy community. Among abiotic stresses, dam-
age by hail is one of the most prevailing and destructive
(Changnon et al., 2009; Klein and Shapiro, 2011; Punge and Kunz,
2016; Battaglia et al., 2019a, 2019b). Hail, defined as a set of
irregular ice bodies that form in convective clouds (Kunkel and
Changnon, 2003), causes significant damage to crops (Prabhakar
et al., 2019). In regions where the occurrence of hailstorms is com-
mon, such as in mid-latitudes across the world, it can have a sig-
nificant impact on the growth of crops, and it is predicted that
increasing climate change may increase the frequency of these
extreme weather events (Piani et al., 2005; Diffenbaugh et al.,
2013), and the associated losses in agricultural production
(Torriani et al., 2007). On a global scale, hail events have report-
edly risen in the last decades (Vescovo et al., 2016). Contrarily,
data collected in the U.S. suggests that hailstorms and consequen-
tial damage to crops and properties decreased from 1950 to 2009
(Botzen et al., 2010). In Europe, potential damages due to hail-
storms with a return period of 200-300 years were estimated to be
around 4 billion EUR (Zimmerli, 2005), and reports suggest that
severe thunderstorms and extreme events associated with harmful
atmospheric agents in the continent are on the rise (Mohr and
Kunz, 2013). In Italy, the hailstorms are mainly concentrated in the
northern part of the country: the Po Valley and the Pre-Alps,
specifically in Lombardy and Veneto (Baldi et al., 2014; Punge et
al., 2014). Maize farming is prevalent in this region, accounting
for 90% of Italian maize production (ISTAT, 2021). Typically, the
maize sowing period in Italy ranges from the end of March until
mid-May, with the most considerable growth rates occurring in
June, July, and August, when the risk of hailstorms in the country
is maximum. In the US, the National Weather Service defines
severe hail when they reach 25.4 mm in diameter. Farmers and the
agricultural community consider hail severity according to the
impacts on crops. Small hail in large volumes or driven by strong
winds is the worst scenario for farmers since hail can strip crop
heads and stalks (Childs et al., 2020). The mechanical impact of
hail on the maize canopy and the consequent damage to plants has
been well documented over the last 50 years (Hanway, 1969; Hicks
et al., 1977; Shapiro et al., 1986; Klein and Shapiro, 2011;
Battaglia et al., 2018; Thomason and Battaglia, 2020). Hail

reduces grain yield by shredding leaf blades and reducing the pho-
tosynthetic area (Dungan, 1934; Jenkins, 1941; Hanway, 1969;
Vorst, 1993; Klein and Shapiro, 2011). When hailstorms occur at
the early growing stages of maize, plants are typically broken at
the soil surface level, reducing plant stands (Dungan, 1934; Vorst,
1993; Nielsen, 2012). In maize plants, hail damage can interfere
with the movement of assimilates in the plant (Dungan, 1934).
Moreover, damage by hail can trigger pathogens attacks and leaves
losses, further reducing the loss of photosynthetically active areas
and, with this, the reduction in grain yield (Johnson, 1978;
Grotjahn, 2021) and the amount of biomass collected (Furlanetto
et al., 2021).

The timing (i.e., the phenological stage when hail damage
occurs) and the severity of defoliation (percentage of leaf damaged
or removed) are the main variables determining the degree of dam-
age in maize plants subjected to hail events (Hanway, 1969;
Battaglia et al., 2018, 2019b). Complete defoliations up to the V6-
V7 according to the BBCH scale (Meier et al., 2009), growth
stages (collar method; Abendroth et al., 2011) usually cause mini-
mal to no reduction in the final grain yield, as the plant growing
point is still below the soil surface until this time (Vorst, 1993; Lee,
2007; Klein and Shapiro, 2011; Battaglia et al., 2018). However,
early complete defoliations in maize have the potential to delay the
period from planting to anthesis (Dungan and Gausman, 1951),
silking (Battaglia et al., 2018), or both (Cloninger et al., 1974) by
2 to 8 days. On the other hand, low-intensity defoliation after the
V10 stage could reduce the final yield by up to 30% (Battaglia et
al., 2019a). From this point, damage in plants subjected to hail
damage gradually increases, with grain yield reductions of up to
100% when defoliation occurs immediately before, at, or a few
days after the VT stage (Hanway, 1969; Egharevba et al., 1976;
Vasilas and Seif, 1985; Andrade et al., 1999; Adee et al., 2005). In
previous studies, yield losses associated with defoliation around
VT/R1 were mainly explained by reductions in kernel number
(KN) (Culpepper and Magoon, 1930; Hanway, 1969; Severini et
al., 2011; Tamagno et al., 2016; Battaglia et al., 2018), with most
significant decreases in KN ranging between 62% and 95%
(Egharevba et al., 1976; Battaglia et al., 2018). Grain yield losses
due to hail damage can also be explained by reductions in the ker-
nel weight (KW) when defoliation occurs immediately before or at
R2 (beginning of the grain filling period) (Hanway, 1969;
Egharevba et al., 1976; Tollenaar and Daynard, 1978; Echarte et
al., 2006) without changing the final KN. However, more recent
studies have also shown that decreases in KW with partial or com-
plete defoliation around the R2 stage may decrease not only KW
but also the final KN (Tamagno et al., 2016; Battaglia et al., 2018).
Following completion of the critical period for grain yield determi-
nation (i.e., +/– 15 to 20 days bracketing VT/R1 stages), grain
yield losses due to hail damage decrease progressively as maturity
is approached (Eldredge, 1935; Vorst, 1993) to reach minimum
values at or around 0% yield reduction when damage occurs
around maturity (Dungan, 1934; Jenkins, 1941; Adee et al., 2005;
Battaglia et al., 2018). Determination of the hail damage impacts
on maize for biomass and silage purposes has received less atten-
tion than similar effects in maize for grain production (Simonelli et
al., 1983; Lauer et al., 2004; Barimavandi et al., 2010). In a study
conducted almost 50 years ago, Baldridge (1976) evaluated the
effects of simulated hail damage on both forage yield and grain
yield in irrigated areas in Montana, U.S., and found that defoliation
(between 50 and 100%) conducted at V7 and V11 stages reduced
forage yield more than the grain yield; on the contrary, when defo-
liations were applied at the V15, VT and R2 (i.e., milk stage), the
reduction in the grain yield was greater than the concomitant
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reduction in the forage yield. More recently, Lauer et al. (2004)
found that a 16% decrease in yield occurred if 100% defoliation
occurred at V7. The impact that different defoliation timing and
severities have on final maize grain yield is utilised by the crop
insurance industry to estimate the percentage of grain yield loss
due to defoliation events (Österreichische Hagelversicherung,
2013). In the US, charts used by insurance companies to assess the
maize grain yield loss due to defoliation at different stages and
with different severities were developed in the late 1960s and are
still valid in most situations (Battaglia et al., 2019a). 

Remote sensing and atmospheric events
Remote sensing is widely used in agricultural management to

evaluate topographic and biophysical characteristics (Wang et al.,
2019; Szantoi et al., 2020; Dindaroglu et al., 2021; Nutini et al.,
2021). Optical data acquired from any distance from the ground
(terrestrial, aerial, and satellite) has effectively estimated the extent
of defoliation caused by hail in maize canopies (Gobbo et al.,
2021). Moreover, these remote monitoring platforms could be used
as a possible solution to drastically reduce the associated costs of
insurance inspections in hail-damaged fields (Sosa et al., 2021).
The image acquisition combined with field measurements carried
out in a field survey could provide cost-effective scenarios to be
used to map the extent and severity of defoliation of maize plants
subjected to hail events (Erickson et al., 2004).

Another methodology found in the literature consists of directly
evaluating hail defoliation using remote sensing images collected
before and after the hail event through a simple difference in spec-
tral indices (Prabhakar et al., 2019). The principle that guides the
use of satellite imagery (visible or near-infrared) with change detec-
tion for the assessment of hail damage is that hail and wind can alter
the characteristics of the canopy, producing changes in the vegeta-
tion structure that can be detected from the sensor (Prabhakar et al.,
2019). At the experimental level, the combination of optical-
infrared and microwave-radio wave data (data merge of two differ-
ent satellites) can also be used to monitor large-scale hail events
(Gallo et al., 2019; Molthan et al., 2020). The drawback of these
technologies for small-scale farms is their inherently low spatial
resolution, which can be unsuitable for highly fragmented agricul-
tural landscapes. Using vegetation indices (VIs) as a single indica-
tor quantifies and simplifies the understanding of one or several
specific biophysical parameters of the crop (Schillaci et al., 2021).
Historically, most VIs developed for crop yield prediction purposes
are focused on large areas (Hamar et al., 1996; Sibley et al., 2014;
Lopresti et al., 2015). With the increasing availability of satellite
imagery and their temporal and spatial resolution (Lobell and
Azzari, 2017; Azzari et al., 2017), medium to high-resolution opti-
cal sensors are helpful for agricultural monitoring applications (e.g.,
Planet, Landsat, RapidEye, and Sentinel). Sentinel-2 (S2) provides
free and publicly accessible data, with a medium spatial resolution
(10-20 m for the main spectral bands) and a high temporal resolu-
tion (5 days at the equator) (Drusch et al., 2012). The NDVI index
(Rouse et al., 1973) is one of the most used VIs to evaluate crop
growth and yield (Peralta et al., 2016), and becomes a reference
point for researchers developing new VIs (Hatfield et al. 2008).
However, NDVI can be subjected to saturation in mid-high leaf area
index (LAI) conditions (Nguy-Robertson et al., 2012). Other issues
regarding the use of the NDVI index were analysed by Jing et al.
(2004). According to the literature, NDVI is sensitive to the concen-
tration of chlorophyll, the humidity of the soil surface layers, the
light diffused in the atmosphere, the angle of view zenith, and the
zenith of the sun. The NDVI becomes less sensitive in these condi-
tions but is also less susceptible to variation in vegetation parame-

ters. Although this saturation may be partially contained when
selecting the bands to be analysed, the best alternative is to use
three-band indices (Verrelst et al., 2013, 2015). To overcome the
saturation problem, new VIs have been developed (Fadaei, 2020;
Talukdar et al., 2020; Leo et al., 2021). Verrelst et al. (2015) eval-
uated many vegetation indices generated from Sentinel-2 data and
found that the best indices matched the three-band indices accord-
ing to the normalised formula (ρ560- ρ1610- ρ2190) / (ρ560 +
ρ1610 + ρ2190). According to Kang et al. (2016), EVI and EVI2
are the most effective among the various indices. The EVI-LAI and
EVI2-LAI relationships are robust and valid in multiple spatial
scales and global scales.

Agricultural insurances
Insurance is one of the most widely used and recognised meth-

ods for managing the risk of potential losses due to severe weather
events. Insurances are a passive protection method, as insuring
does not prevent the risk of damage but allows compensation
based on the damage received (Curry and Koczberski, 2012;
Gaupp et al., 2017; Erhardt et al., 2019). Weather extremes can be
categorised as catastrophic (infrequent, high impact) or non-catas-
trophic (frequent and low impact events) (Lyubchich et al., 2019).
Cumulating losses yearly, even non-catastrophic events tend to
cause more significant losses than natural disasters (Lesk et al.,
2016); however, frequent and low-impact events do not receive
considerably less attention from the media, public opinion, and sci-
entific literature. Measuring the impact of non-catastrophic events
is crucial in developing efficient weather risk mitigation strategies
while raising public awareness of weather risks and improving
society’s resilience to the actual occurrence of these events
(Toeglhofer et al., 2012; Toreti et al., 2019). For example, non-
catastrophic weather risks can directly impact the increase in costs
and the decrease in sales volume in agricultural companies
(Capitanio and De Pin, 2018). High risks also imply more expen-
sive insurance or even a denial of insurance coverage (Lyubchich
et al., 2019). Every year, the Norwegian Meteorological Institute,
in collaboration with the EASAC (European Academies Science
Advisory Council), draws up a report on extreme weather events in
Europe. Recently, one of these reports highlighted that the insur-
ance sector recorded a sharp increase in the number of extreme
weather events causing significant economic losses in Europe over
the last four decades (Hov et al., 2013). For example, insurance
companies in Austria spent 240 M EUR to compensate for agricul-
tural losses due to extreme weather events in 2013
(Österreichische Hagelversicherung, 2013). These measures are
necessary to reduce the impacts of abiotic stresses and weather
associated with climatic change (Link et al., 2006; Shah et al.,
2021). As mentioned before, a traditional field damage estimation
process operated by insurance technicians and based on standard
approaches can be expensive in terms of time, money, and difficul-
ties accessing certain parts of the field. Moreover, the subjective
nature of the field-taken measurements could compromise the effi-
ciency and accuracy of the observations and, with this, the value of
the resulting estimates. Innovative tools for precision agriculture
monitoring would be helpful not only for the insurance sector but
also for large-scale agriculture: damage mapping, for example, can
provide vital information to improve agricultural management
(Vescovo et al., 2016).

Aims of the work
This work aims to evaluate the feasibility of remotely sensed

vegetation indices to provide data relating to damage from atmo-
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spheric agents (hail and wind) on the cultivation of grain maize and
silage. The NDVI index and other indices (SAVI, MSAVI,
MSAVI2, ARVI, MCARI) were used to obtain representative aver-
age values of the fields under study (with the exclusion of head-
lands) to evaluate the relationship between the index and the dam-
age estimated by hail, strong wind or their combination. 

Specifically, this study aimed to: i) evaluate whether it is pos-
sible to distinguish crops damaged by atmospheric events (i.e., that
have suffered damage greater than or equal to 10% of the gross
production not-damaged crops (not subject to adverse weather
conditions) and crops affected insignificantly (damage less than
10% of the gross production); ii) for the fields where ground dam-
age was estimated, utilise satellite images to compare this informa-
tion with the field estimation.

Materials and methods
The study includes the comparison of two methodologies: i)

damage assessment through field data collection and insurance
damage evaluation tables; ii) damage estimation through VIs. Prior
to that, an unsupervised classification on the VIs time series was
carried out to distinguish between maize planting dates and type
(grain or silage) (Figure 1).

Study area and field data
Field data were collected in 125 sites in the Brescia district

(Lombardy), Italy, during the spring and summer seasons in 2018.
The plots had various sizes, ranging from one to eight ha (on aver-
age 4 ha), with less than 2-3% slope, and were always under either
maize for grain or silage purposes. According to the Köppen clas-
sification, the bioclimate is Cfa class (temperate climates with
humid summer and the average temperature of the hottest month
above 22°C). The average 25-year annual rainfall in the area is 990
mm (ISPRA, 2020). 

Cadastral information from the Italian Revenue Agency was
then retrieved using the STIMATRIX for Maps tool (formaps.it).
Through this platform, the Cadastral information was overlaid to

Google EarthTM. These fields were loaded via a polygonal vector
layer in QGIS (version 2.18 and 3.10). The Italian Cadastre was
used for their univocal identification: each field was named with
the specific (Sheet, Map, Municipality) to make the files unique
and easy to understand. As a result, each specific map within a
sheet of a municipality in the Italian Cadastre is unique.

The FAO class of the crop, the hybrid, is declared by the
farmer when this crop was damaged by atmospheric events (hail,
strong wind, etc.), and agricultural insurance technicians estimate
the percentage of damage.

Thanks to the technical assessment of the damage compiled by
a professional technician from an accredited agricultural insurance
company (data provided for this research for scientific purposes
only), the damage reports of the 125 plots were recovered to assess
the degree of damage after the hail event to estimate the projected
yield damage. All personal information has been omitted for priva-
cy reasons. In addition, the data collected for this analysis were
granted solely for scientific purposes; therefore, personal data and
coordinates of the fields have been omitted.

For each field under study, the percentage of product loss that
the insurance technicians identified and the actual damage at the
survey date were reported. The loss of product expression means
that: i) the grain is no longer suitable when intended for grain
maize; ii) a quantity of forage and quality of residual forage can no
longer be obtained when intended for silage maize.

Unsupervised classification for crop type mapping
We performed K-means unsupervised learning to cluster VIs

data into maize types using SNAP (ESA). K-means is a commonly
used unsupervised classification algorithm (Ma et al., 2020). K-
means partitions m samples into K clusters by alternately assigning
samples to the nearest cluster centroid, measured by Euclidean dis-
tance. Then, the cluster centroids are updated using the mean of the
samples assigned to the cluster (Xiong et al., 2017).

A single raster image was obtained for each plot (no. 125), for
each scene (no. 39), and each vegetation index (no. 6), for a total
of 29,250 images. Therefore, it is possible to analyse the pixels of
these images using change detection (value of the pixel calculated

                   Article

Figure 1. Methodological workflow. VI, vegetation index.
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as T1-T0) or by evaluating the change in the vegetation index per
pair of temporally contiguous images. Furthermore, given that
maize cultivation and its management vary according to the
anthropogenic element, soil conditions, and weather, an unsuper-
vised classification by K-means was carried out to identify sets of
homogeneous crops.

To make three clusters (crop of silage maize, second crop
maize and early-sown maize from grain), the square root of the
sum of the analysed fields (rounded up) was set, and 22 measure-
ments between 04/24/18 and 08/20/18 as variables. This procedure
was carried out to reduce the classification errors that would occur
using dates before 19/04/18 or after 30/08/18 and to sort the data,
displaying the trend of the indices of each cluster and then elimi-
nating any anomalies from the total. The maximum number of iter-
ations was 999, and the convergence criterion was 0. In addition,
the use moving averages option has been added, and cluster index-
ing as a final result.

Therefore, sorting is carried out, and some fields of the clusters
are excluded. The sum of the land cleared of anomalies is 117 (for
the NDVI index). Then, K-means carries out a new classification,
and the computer is instructed to classify three classes: the early-
sown maize from grain, the early-sown silage maize, and the late-
sown maize. This procedure was carried out for each vegetation
index.

Operating guidelines for the insurance damage 
assessment

In Italian agricultural insurance, various methods exist to esti-
mate the damage caused by hail (Capitanio and De Pin, 2018;

Vroege and Finger, 2020; Vyas et al., 2021). Among them, the
most used by the insurance companies are based on a visual assess-
ment of the field and the field survey and collection of a few sam-
ples of leaves that have been subjected to the damage and compare
them with a scale of projected yield losses. Here, a methodology
has been used that quantifies the damage from atmospheric adver-
sities on maize by analysing the foliar inefficiency. Foliar ineffi-
ciency could be defined as the reduction in the functionality and
ability of the plant to normally perform the functions of photosyn-
thesis, respiration, and transpiration and does not correspond to the
defoliation suffered by the plant. During the appraisal phase for the
assessment of defoliation damage, technicians from insurance
companies recorded a series of parameters, such as the identifica-
tion of the plots, the vegetative state of the damaged crop, and the
possible presence of diseases or damages that cannot be compen-
sated, among others. At this phase, technicians use different tables
and graphs that relate the loss of leaf (i.e., defoliation severity) at
a specific growth stage (i.e., defoliation timing), and its consequent
inefficiency, with a decrease in grain or biomass production. These
tables are/were then used in a methodological context that
allows/allowed to relate other elements that compete to determine
the actual damage: direct damage to the tassel, direct or indirect
damage to the ear, malformations, etc. An example of a typical
table used by Italian insurance companies is shown in Figure 2,
step 3. In this assessment methodology, maize plants can be clas-
sified as non-damaged, moderately damaged, and severely dam-
aged. There is a reference to the number of plants sampled and the
percentage of damage the technician assigns to each portion of the
plant sampled (leaves, the stalk, and the kernels). With a simple
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Figure 2. Estimation of the damage caused only by the inefficiency of the photosynthetic apparatus to the phenological stage. GP, gross
production.
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weight average from randomly taken (Figure 2, step 1), and repre-
sentative plants of the non-damaged, moderately damaged, and
severely damaged populations, the technician can obtain good esti-
mates of field damage percentage. The determination of the dam-
age rate attributed to the ‘leaves’ component derives from the esti-
mate of the percentage of loss of the foliar apparatus carried out by
the technician. The latter, with his own experience or with the help
of additional equipment assesses all the leaves in the maize plant
and then attributes an overall average percentage of damage to the
photosynthetic apparatus of the particular plant under observation.
The operation is then repeated in several neighbouring plants that
are to be randomly chosen, and an estimated average percentage of
damage is defined for the entire plot or field under analysis. The
calculated damage percentage is related using empirical tables
with the inefficiency of the photosynthetic apparatus in relation to
the phenological stage in which the crop was at the time of the hail-
storm or adverse event can be seen in Figure 1.

The damage to the stem is closely related to the damage to the
leaves, corresponding to a percentage of leaf damage. In contrast,
the damage to the kernels can be direct (loss of kernel or a part of
the ear by the direct impact of hail) or indirect (e.g., increase in the
% of abortion or unfertilized kernels hit by hail). In Figure 2 of the
supplementary materials, it is possible to consult where individual
leaves of the maize plant for which a percentage of foliar ineffi-
ciency has been attributed according to the Declaratoria Simonelli,
a document dated back to 1978, can be observed as reported in step
2 of Figure 2.

Some insurance companies (e.g., the company that provided
the data) use this methodology to estimate the production losses of
grain maize. Concerning silage maize, there is the assessment of an
increase in damage due to the loss of forage quality. This increase
is tabular and corresponds to a certain percentage of damage based
on the damage attributed to the grain. Table 1 shows how this
quantification of quality loss occurs in an Italian agricultural insur-
ance company.

In Table 1, the first two lines identify the percentage of damage
(percentage of the biomass lost) and the quality loss coefficient (an
empiric coefficient used by the insurance to calculate the indirect
damage, potential pathogen attacks, and reduced resilience of the
plants) to be applied to the residual biomass after the hailstorm in
the field for the determination of the quality damage of the silage
maize. 

Vegetation indices calculation for damage assessment
The Sentinel-2 program is part of the Global Monitoring for

Environment and Security (GMES) program. In fact, Sentinel-2
contains a multi-spectral imager (MSI) sensor that allows a maxi-
mum amplitude of 290 km to record 13 spectral bands reflected
from the earth’s surface. These bands range from visible light to
short wave infra-red SWIR short infrared with different spatial res-
olutions: i) 10 meters for visible light and NIR; ii) 20 meters for
the red-edge bands and SWIR; iii) 60 meters for the bands that
allow the atmospheric correction of the data.

The average temporal resolution of the Sentinel-2 is five days.

For a multi-temporal analysis, it is common to disregard some
images due to the high cloud cover that limits vegetation’s detec-
tion. In this work, the images were downloaded from the ESA serv-
er at the site http://scihub.copernicus.eu/. The survey period has
been set between 01/03/18 and 01/10/18. Sentinel-2 images are
geometrically corrected by top-of-atmosphere reflectance (TOA)
or by the variations caused by the atmosphere with TOC (top-of-
canopy reflectance). The L1C and L2A processing levels imagery
is downloadable from Sentinel Open Hub.

An automatic sorting based on the estimated percentage of
cloud cover has not been applied to avoid running into the follow-
ing problems: i) the inexistence of a well-defined threshold
(threshold) that would allow the images to be classified before
their use; ii) the elimination of useful images due to the position of
the cloud cover concerning the position of the land analysed in the
image: paradoxically, an image with high cloud cover may not
affect the areas analysed or vice versa. This way, 39 scenes for S2A
and 35 scenes for S2B in the Brescia District were selected. Using
GIS software, a second visual selection significantly decreased the
usable scenes.

The raw images downloaded from the Open Access Hub site
are not readily usable: they contain the 13 spectral bands detected
by the MSI sensor, but each of them is structured according to its
spatial resolution does not allow for the immediate creation of VIs.
Therefore, sentinel application platform (SNAP) software, devel-
oped by ESA with the primary purpose of processing Sentinel-2
data, has been used to process the downloaded Sentinel-2 images.
Versions 8.0.0 has been used. Using SNAP, the raw image down-
loaded from Open Access Hub was resampled to bring all the
bands produced by Sentinel-2 back to the same spatial measure-
ment unit. It was decided to resample each spectral band back to a
spatial resolution of 10 m. Subsequently, six different vegetation
indices are calculated using the SNAP software (NDVI, SAVI,
MSAVI, MSAVI2, ARVI, MCARI).

Damage estimation from vegetation indices
The images of the indexes of the plots are processed through

the QGIS software. Only the scenes before (PRE) and after
(POST) of hailstorm events were selected, and a new layer was
calculated as VI POST-VI PRE (ΔVI) is the difference between the
index of the POST event and the PRE -EVENT vegetation index.
A colour scale based on five quantile classes is created for each
image to classify each pixel into one of the five classes (Xiong et
al., 2017).

In addition to the verification of the change detection through
vegetation indices and the estimation of the accuracy of the satel-
lite data compared with the ground data, this work also aims to
identify and evaluate the relationship between the difference (ΔVI)
and the damage on the gross production reduction recorded on the
ground to assess the possible relationship. The procedure for iden-
tifying and evaluating the relationship between ΔVI and ground
damage is as follows: 

ΔVI values are grouped by event: this is due to the phenology
of maize, which changes over time; damage to the ground equal to

                   Article

Table 1. Quality damage, only for silage maize and derived percentages of damage.

% of damage observed         % Quantity loss               0             10            20            30            40             50           60         70          80/100
in production                                       

                                                       Coefficient of quality loss            0                  4                   6                   8                  15                 20               25             30                   40
                                                               per residue of % 
                                                                 of quantity loss                       
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0% is assigned to not-damaged and to those affected by damage
less than 5% (average between 0 and 10) only if they are not given
a precise value; since there were five different hail events, the
response in terms of VIs needs to be normalised. The difference
VIs data is transformed into a z-value according to the formula:

                                                                         
(1)

where xi represents the i-th value that the vegetation index assumes
according to the space-time information (plot and data detection
date), μj is the j-th average of the vegetation index on the temporal
basis (detection date), and σj is the j-th standard deviation of the
vegetation index on a time basis (Bell et al., 2020). This procedure
aims to normalise the data and allows the comparison between
multiple atmospheric events despite the diversity of distribution of
the index values. Once the z values have been created, we use three
methods and compare the results with three different accuracy cal-
culations. 

The first method analyses the data regardless of the crop’s phe-
nological stage and the dates of atmospheric events. In this case,
the analysis focuses on all the data. The second method analyses
the data regardless of the phenological stage, but five separate
analyses are carried out considering the individual atmospheric
events. Finally, the third method analyses the data considering the
different events and the different phenologies of the crops: ten
additional analyses are carried out. 

To evaluate the accuracy of the methods, the MS Excel
‘Solver’ tool is set to determine the most convenient threshold to
maximize the overall accuracy (Congalton 1991), the probability
of false alarms, and the probability of missed alarms. For calculat-
ing these last two accuracies, their sum is considered, i.e., the
threshold that determines the lower of the values of the combina-
tions is selected (false alarm + missed alarm). To choose the left
and right limit of the curve, which the threshold calculated by the
solver instrument must not exceed, this limit is set in ±2σ of the
analysed data. This evaluation approach is often used in assessing
remote sensing classifications, for crop type mapping (Vuolo et al.,
2018), and direct assessment of yield losses (Furlanetto et al.,

2021).

    

where TP, true positives; TN, true negatives; FP, false positives;
FN, false negatives.

Results

Unsupervised classification of grain maize and forage
maize

The K-means unsupervised classification allowed the classifi-
cation of all the fields considered in three clusters in this analysis.
The fields affected by atmospheric adversities are then considered
for the change detection analysis. In Table 2, the results of the clus-
ter analysis are presented (Figures 3 and 4).

Accuracy of the change detection method
A sampling of the majority component was performed to anal-

yse the data in a balanced way. A K-means algorithm selected rep-
resentative centroids of the not-damaged fields, reducing them

                                 [Italian Journal of Agronomy 2022; 17:2126]                                                 [page 369]

                                                                                                                                 Article

Figure 3. Typical normalized difference vegetation index (NDVI) pattern of the early sown maize (blue dots) and late maize for silage
(orange dots).

Table. 2 Number of cases (fields number) in each cluster.

Class                                                      No. of individual fields

Class                                        1                                                     18
Class                                        2                                                     24
Class                                        3                                                     75
Correctly classified                                                                   117
Missing                                                                                           0
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from 550 total during the five events to 37. Considering the same
area for each class shown in Table 3, by randomly choosing a sam-
ple area of an unaffected crop by damages, it is possible to perform
the accuracy calculations on a balanced sample (e.g., for the silage
maize 1st sowing period 26 ha of unaffected areas were considered
to perform the accuracy analysis). Table 4 shows the ranking of the
VI in terms of accuracy and false-positive discovery. The MSAVI

index ranks first among the other VIs with an overall accuracy of
73.3%, while the NDVI ranks last with 65.3%. The result of the
accuracy calculation of the VIs showed the highest accuracy with
soil-adjusted indices, i.e., the indices that reduce the noise pro-
duced by the soil (SAVI, MSAVI, MSAVI2). These indices have
shown the greatest accuracy against ground truth, minimising false
positives and false negatives. The difference in accuracy between

                   Article

Table 3. Assessment of the fields affected by damage.

Class                                                            No. of fields (area)                                  No. of fields (area affected by damages)

1 Silage maize 1st sowing period                                         18 (78 ha)                                                                                            7 (26 ha)
2 Silage maize 2nd sowing period                                        24 (94 ha)                                                                                           10 (41 ha)
3 Corn 1st sowing period                                                       75 (220 ha)                                                                                          22 (69 ha)
Total                                                                                         117 (392 ha)                                                                                        39 (136 ha)

Table 4. Accuracy of the vegetation indices change detection (127 fields).

Index                             Event no.                                             Overall accuracy                              False positive-false negative range

MSAVI2                                         01->05                                                                           72.0%                                                                                     48.6%
SAVI                                               01->05                                                                           70.7%                                                                                     47.2%
MCARI                                          01->05                                                                           65.7%                                                                                     45.6%
NDVI                                             01->05                                                                           65.3%                                                                                     47.9%
ARVI                                              01->05                                                                           66.7%                                                                                     47.2%
MSAVI                                           01->05                                                                           73.3%                                                                                     46.5%
Fabijańczyk and Zawadzki, 2022. MSAVI2, modified soil-adjusted vegetation index; SAVI, soil-adjusted vegetation index; MCARI, modified chlorophyll absorption in reflectance index; NDVI, normalized difference veg-
etation index; ARVI, atmospherically resistant vegetation indexexplain; MSAVI, modified soil-adjusted vegetation index.

Figure 4. Classification of the maize cultivated in the study area plots, blue dots represent early-sown corn for grain production, red
dots are late-sown maize, and yellow dots are early-sown maize for silage.
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the MSAVI index and the NDVI index, i.e., the maximum differ-
ence between the two indices equal to 8.0%, corresponds to 6 out
of 75 fields (not damaged or damaged), which the NDVI index
places among false positive/false negatives while the MSAVI
index places between true positive/true negative. Maps of the
MSAVI index are displayed in Figure 5 and Table 5.

A set of fields increased their VIs and the vegetation within-
field variability after the hailstorm event due to a marked decrease
in the areas damaged by the hailstorm; therefore, a slightly lower
detection rate was observed from the VI change detection method
in the first and second event, from the third event to the fifth, the
assessment of damage was very similar between insurance surveys
and VIs change detection (Figure 6).

By analysing all the images (117), it was possible to assess
three different ways in which the MSAVI index behaves in dam-
aged fields: i) partial decline, i.e., the VIs drops only in a part of
the land. Therefore, it is assumed that the land has been damaged,
especially in parts showing the greatest decline; ii) generalized
decline, i.e., the VIs falls widely over the entire plot. It is assumed
that the field has been homogeneously damaged; iii) no decline or
the VIs varies insignificantly. This is the most controversial case:
it determines any False Negatives when a method based on the
POST-PRE difference of a vegetation index is used. Using the
MSAVI and the 35 images of damaged fields, it was possible to
group images into the three scenarios mentioned above. Therefore,
we obtained nine scenes in which the MSAVI decreased partially,

13 scenes in which the MSAVI fell homogeneously, 13 scenes in
which the MSAVI did not decrease significantly.

Discussion

Crop type classification 
To classify grain maize and forage maize, the unsupervised

classifications allowed for the crop mask’s definition. The classifi-
cation approach consisted of two steps: i) the first to process the
raw data and exclude any anomalies upstream of the processing; ii)
the second to classify types of the same crop (early-sown, late-
sown, grain, silage maize).
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Table 5. Modified soil-adjusted vegetation index and normalized
difference vegetation index score in true positive, true negative,
false positive, and false negative accuracy.

Index           TP                       TN                    FP                    FN

MSAVI               25                               30                             7                            13
NDVI                  17                               32                             5                            21
MSAVI, modified soil-adjusted vegetation index; NDVI, normalized difference vegetation index; TP, true
positive; TN, true negative; FP, false positive; FN, false negative.

Figure 5. A) Pompiano field 17;32; B) Verolavecchia field 4;12-14-15; C) Orzinuovi field 25;133-134-135-136. Within each image,
three representations of the vegetation index (VI) can be identified on the top before (PRE) and after (POST), while on the bottom the
variation of the VI as difference POST-PRE (ΔVI). Showing the variation of the modified soil-adjusted vegetation index only for three
responses after the hailstorm i) decrease in the VI, no significant changes in VIs conditions, and VIs increase after the hailstorm.
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Concerning the first step, the visual analysis of the deleted
images, two anomalies of the VI are characterised: i) the presence
in the plot of a different crop than maize and which is characterised
by a variation of its own VIs; ii) the presence in the same plot of
two different crops, one of which could be maize, which has dif-
ferent vegetative cycles and soil cover and which, by averaging all
the pixels of the plot, produce distorted index data.

The second unsupervised classification was made to differen-
tiate a priori the two patterns that occur in any index and distin-
guish, regardless of atmospheric events, early-sown and late-sown
maize. However, the optimal classification was in three classes.
The approach enabled us to distinguish between early and late-
sown maize for grain or silage production.

Calculation of the accuracy using the qualitative
method

The comparison of the PRE, POST and ΔVI images of the
damaged fields allowed us to identify three groups: i) the first is
when the VI dropped down after the hailstorm on the part of the
plot; ii) the homogeneous decline of the VI after the hail event
throughout the plot; iii) no drop of the VI across the plot.

A simple spatial analysis of the variation of the VIs images,
considering the fields that show a significant reduction in the index
as damaged, cannot be the correct solution to determine any dam-
age suffered by the crops.

An alternative solution could be using a finer ranking of the VIs
to identify a possible variation in more detail (in the following
work, the MSAVI has been classified into five classes of the size of

0.2 as the VI ranges from 0 to 1). However, this method also applied
to not-damaged or only HIT land would increase false positives as
they would be classified as significant small changes in the VI.

Scientific interest in the results obtained and 
the novelty of the proposal

In the field of agricultural insurance, the most common method
to estimate the damage produced by hail consists in first determin-
ing the percentage of observed hail-related damage in randomly
selected and representative plants at the field level, to then relate
these losses with the percentage of damage for a particular maize
growth stage in the chart grain yield losses used by insurers (Lauer
et al., 2004; Gobbo et al., 2021). However, using this method to
determine the field damage following a hail event accurately is
complex. Choosing representative plants subjected to hail damage
can be time-consuming and overly subjective (Battaglia et al.,
2019). Usually, hail-related damage in a field follows an irregular
pattern within the field due to the different topography, the direc-
tion of the winds that displaced the hail during the storm event, and
the randomness with which this has affected the crop. Furthermore,
affected parts of the plot could be inaccessible, or the presence of
a tall and well-developed crop could prevent the canopy from
being seen in depth (Erickson et al., 2004). Operational problems
arise in proceeding with this methodology.

The proposed method allows classifying an area with good
accuracy, highlighting not only the differences between crops but
also within it, exponentially increasing the information detail that
can be obtained. The benefits of such methodology substantially

                   Article

Figure 6. Damage assessment via insurance survey and vegetation index (modified soil-adjusted vegetation index difference after-before
the hail event).
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impact the farmers to understand better how an atmospheric event
may have damaged their farm. From the advisor’s point of view,
the methodology has allowed defining which parcels have been
damaged by a weather event that has just passed or evaluating data
from previous years. For a better management strategy during the
cultivation, the methodology can indicate minor damage and adjust
N fertilisation and irrigation. The economic advantages of the
methodology can bring some innovation in the agricultural insur-
ance companies and their providers to better organise their human
resources and develop a sampling map for further detailed on-
ground assessment. The more accurate detection of damages will
be useful for defence consortia (e.g., Confagricoltura) to assess the
damage at a district level and intervene alongside farmers. Finally,
local and national public entities can benefit from adopting the
methodology as a forecasting and verification tool.

Possible future developments
It was possible to evaluate some limitations during the work

mainly due to reliable damage estimation done in a scientific con-
text out of economic interests. It is expected that future investiga-
tions will take advantage of the information from this work and
may enhance some aspects that could not be investigated, such as
the measurement of a set of biophysical variables on the ground
(wet biomass, dry biomass, chlorophyll content, quantity of water
in the canopy) as well as the comparison with the satellite data. The
use of other methods, such as the combined reflectance of the main
spectral bands and wavelengths (blue, green, red, NIR, SWIR).
The increase of the initial samples in other regions and additional
years. The use of balanced data provided a better view of the phe-
nomenon. Furthermore, it allowed us to improve the discovery rate
of damaged fields, i.e., the definition of some parcels damaged in
the same way (e.g., 20 fields at 0% damage, 20 fields at 5% dam-
age, 20 fields at 10% damage, etc.). Using satellite or unmanned
aerial vehicles (e.g., drones) data at a higher spatial resolution can
improve the automatic delimitation of the plots, especially when a
reduced surface or an irregular perimeter characterises them.

Finally, it would be interesting to quantify the costs of applying
the methodology and the development of an automated workflow
considering the market interests considering each stakeholder
involved.

Conclusions
The significant and recent increase in the number of claims to

agricultural insurance companies in many areas of the planet has
spurred an interest in the potential use of innovative tools to cope
with this situation. Improved monitoring tools can provide strate-
gic information for planning adaptation measures in the agricultur-
al and forestry sectors.

In this work, vegetation indices (SAVI, MSAVI, MSAVI2,
ARVI, MCARI) have been identified and evaluated to classify the
damage produced by some atmospheric agents (hail and strong
wind) using scenes obtained from the Sentinel-2 satellite fleet.

The results achieved are: i) in evaluating the indices from the
qualitative point of view of the damage classification, i.e., the
accuracy in correctly distinguishing damaged soil from not-dam-
aged, the vegetation indices of the ‘soil-adjusted’ type proved to be
the most efficient. Among them, the MSAVI index stands out as
the most performing of the six tested indices; ii) the images of
damaged fields can be classified into three groups: partial decline
in the index, homogeneous decline, and no decline. While the first

two cases are strictly associated with damaged fields, the third case
can be easily confused with the images of not-damaged fields and,
therefore, depending on the method, is subject to being false neg-
ative; iii) Sentinel-2’s decent time resolution allows for numerous
scenes with good spatial detail, but most images need to be filtered
due to cloud cover; iv) the damage estimates carried out by third-
party technicians tend to be approximate, and their assessment
does not always reflect reality, due to estimation errors and the use
of typical practices of the agricultural insurance sector.
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