
Abstract
A scoping review of the relevant literature was carried out to

identify the existing N recommendation systems, their temporal
and geographical diffusion, and knowledge gaps. In total, 151
studies were identified and categorised. Seventy-six percent of N
recommendation systems are empirical and based on spatialised
vegetation indices (73% of them); 21% are based on mechanistic
crop simulation models with limited use of spatialized data (26%
of them); 3% are based on machine learning techniques with the
integration of spatialised and non-spatialised data.
Recommendation systems appeared worldwide in 2000; they were
often applied in the exact location where calibration had been car-
ried out. Thirty percent of the studies use advanced recommenda-
tion techniques, such as sensor/approach fusion (44%), algorithm
add-ons (30%), estimation of environmental benefits (13%), and

multi-objective decisions (13%). However, some limitations have
been identified. For example, empirical systems need specific cal-
ibrations for each site, species, and sensor, rarely using soil, veg-
etation, and weather data together, while mechanistic systems
need large input data sets, often non-spatialised. We conclude that
N recommendation systems can be improved by better data and
the integration of algorithms.

Introduction
From the late ’90s until now, precision agriculture has come to

farmers’ attention due to its potential for decreasing economic and
environmental costs (Pattey et al., 2001) by applying techniques
that increase input use efficiency. Since then, attention has been
focused on nitrogen (N), an important growth-limiting factor, the
management of which can have significant economic and environ-
mental drawbacks (Olfs et al., 2005). There are different defini-
tions of precision nitrogen management; one involves the concept
of precision crop management that applies nitrogen inputs to
match the spatial and temporal variability of crop requirements
(Taylor and Whelan, 2005). Precision management is based on
two steps: the first involves capturing the variability of soil and
crop properties (monitoring), and the second is a decisional level
where the pieces of information coming from the monitoring
phase are used together to quantify the agronomic inputs to apply.
So far, the scientific literature has dealt with the monitoring phase
by studying proximal and remote sensing techniques suited for
crop and soil monitoring (Mulla, 2013) and by evaluating their
capacity to estimate N-related crop variables (Corti et al., 2018;
Corti et al., 2020). Regarding the second step (decision level), var-
ious attempts have been developed to define N recommendation
systems assisted by new technologies (Franzen et al., 2016;
Shanahan et al., 2008).

Various recommendation systems have been proposed from
the late 1990s until now. Not all of them explicitly address field
spatial variability but are worth considering because they estimate
recommended N rates for arable crops. Some of these systems
have actually been used in operational conditions, such as the N
mass balance model (Stanford, 1966) that relies on soil measure-
ments together with weather and crop management information
(without in-season monitoring); or commercialised algorithms
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Highlights
- A scoping review of the main side-dress nitrogen recommendations systems.
- Empirical models are the most common but difficult to generalize.
- Mechanistic models and machine learning rarely consider spatial variability.
- Advanced solutions propose data/algorithm fusion and study environmental outcomes.
- Future research must maximize the integration of high-resolution monitoring data.
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that imply the use of optical sensors to retrieve crop status (Francis
and Piekielek, 1999; Raun et al., 2005; Holland and Schepers,
2010) and make recommendations for N mineral fertilizers.
Scientific reviews currently available on this topic are rather spe-
cific because they focus on the approaches used in selected coun-
tries (e.g., Morris et al., 2018) or specifically assess methods based
on crop sensors only (Shanahan et al., 2008; Franzen et al., 2016).
However, no review has yet to summarise N recommendation sys-
tems state of the art.

Therefore, we carried out a scoping review to: identify, sum-
marise, and review the N recommendation systems available and
their geographical and temporal diffusion; define trends of the
development and application of these systems over time, and iden-
tify knowledge gaps. The review, which involved the analysis of
354 scientific papers published between 2000 and 2020, was car-
ried out following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews
(PRISMA-ScR; Tricco et al., 2018). This technique allows map-
ping available evidence on a topic and identifying the main con-
cepts and knowledge gaps. 

Four questions were established at the start of the bibliographic
research and used as a guide: i) What recommendation systems are
available to support the decision to side-dress N rate at the field
and sub-field scale in arable crops? ii) What are the temporal and
geographical diffusion of these methods? iii) What advanced solu-
tions can be identified in N recommendation systems? iv) What
knowledge gaps limit the adoption of these systems?

This paper describes the literature search and its results and
discusses the knowledge gaps identified.

Materials and methods
This work applied a scoping literature review according to the

PRISMA method. Figure 1 summarises the search flow of our
work. Five steps were carried out to answer the research questions,
according to the PRISMA method (Tricco et al., 2018): definition
of search strategy, titles and abstract screening, the definition of
eligibility criteria, selection of the studies and data collection, and
data charting. Each step is presented in the following sub-sections.

Search strategy
We identified publications in two steps. First, we searched sci-

entific publications in Google Scholar, Scopus, and Web of
Science using keywords defining agronomic recommendations
(‘decision support systems’, ‘decision support tools’) in combina-
tion with keywords describing nitrogen-related topics (‘nitrogen
uptake’, ‘nitrogen status’, ‘nitrogen fertilization’), crop monitoring
(‘remote sensing’, ‘crop monitoring’, ‘soil monitoring’) and mod-
elling (‘crop modelling’, ‘crop model’, ‘soil model’). Second, we
collected papers written by authors and research groups identified
during step one and relevant references cited in papers selected in
step one. No time limits were imposed. All the publications found
were collected in a unique database.

Titles and abstracts screening
A total of 354 publications (journal papers, conference papers,

articles in trade journals, factsheets, reports, theses, and patents)
were collected. Firstly, the publications were analysed by type, and
17 patents were excluded. Then, the remaining 337 publications
were analysed by reading their abstracts. After the abstract screen-

                   Review

Figure 1. Search flow to select the publications analysed in this work. 
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ing, 71 publications were eliminated because they included quali-
tative and descriptive reviews of crop monitoring and precision
agriculture techniques (n=33), informative articles (n=3), book
chapters (n=7), operational manuals (n=5), and publications relat-
ed to precision agriculture in general (n=23).

Eligibility criteria
After title and abstract screening, the publications considered

for eligibility were 266. The full-text papers were then read and
evaluated against the eligibility criteria that a paper should either
describe a nitrogen recommendation system or propose an
advanced solution to estimate an N-related variable. Following this
screening, 108 publications were excluded.

Selected studies and data collection
The publications that passed the eligibility criteria were 158.

Each publication was classified following the scheme in Table 1.
After the full-text reading of the selected publications and their

classification, the database contained 171 records (some publica-
tions studied more than one method): 105 records, coming from 91
publications, describing nitrogen recommendation systems; 46
records from 44 publications describing recommendation systems
and advanced solutions; and 20 records from 20 papers only
describing advanced solutions.

Data charting
The information collected in the database was used to answer

the research questions. To this aim, data were summarised in tables
and figures using Microsoft Excel (2016) and QGIS (3.16 version;
QGIS.org, 2021). Data were reported both as the absolute numbers
of records and as percentages compared to the total.

Results and discussion
This section is divided into four sub-sections, each represent-

ing one of the research questions established at the beginning of
the work.

What are the nitrogen recommendation systems avail-
able to support the deciding of side-dress nitrogen rate
at the field and sub-field scale in arable crops?

Algorithms used in nitrogen recommendation systems and their
inputs

The breakdown of the dataset according to the type of algo-
rithms used in the recommendation systems is shown in Table 2.

Empirical models, representing 76% of the dataset, define N

                                                                                                                                Review

Table 2. Breakdown of the dataset according to the algorithm implemented in the nitrogen recommendation system.

Type of algorithm                                               Records (n)                                                      Records (%)

Empirical model                                                                               115                                                                                           76
Mechanistic crop model                                                                  31                                                                                            21
Machine learning                                                                               5                                                                                              3
Total                                                                                                    151                                                                                          100

Table 1. List of characteristics of nitrogen recommendation systems extracted from the selected publications.

Category                                        Characteristic                                       Possible values

Paper information                                     Author                                                                     
                                                                      Title                                                                         
                                                                      Year                                                                         
                                                                      Location                                                                 
Algorithm used in the nitrogen             Algorithm                                                               Empirical model/Mechanistic crop model/Machine learning
recommendation system,                       Is it based on an existing system?                   Yes/No
and its application                                    Crop species                                                         Name of crop species
                                                                      Timing of nitrogen application                         Development stage when the recommended nitrogen rate shall be applied
                                                                      Description of method                                       The type of sensor, the variable that is estimated and the type of regression 
                                                                                                                                                       (for empirical methods) or the name of model/machine learning method
                                                                      Type of application                                              Calibration/Validation/Comparison with another N recommendation system
Spatially variable inputs                          Soil sensors                                                          Yes/No
                                                                      Vegetation sensors                                             Yes/No
                                                                      Yield sensors                                                        Yes/No
Non-spatially variable inputs                  Soil                                                                          Yes/No
                                                                      Vegetation                                                             Yes/No
                                                                      Weather                                                                 Yes/No
                                                                      Management                                                         Yes/No
                                                                      Yield                                                                        Yes/No
                                                                      Costs                                                                       Yes/No
                                                                      Nitrogen reference strips                                 Yes/No
Advanced solutions                                   Type of solution                                                   Environmental impact estimation / Multi-objective decision / Data fusion / 
                                                                                                                                                       Add-ons
                                                                      In the case of data fusion, what                      E.g., Soil and weather; Crop and weather; Soil, crop and weather, Satellite 
                                                                      was integrated?                                                    data and crop models, Machine learning and empirical model
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recommendations based on empirical functions, from simple
regression models to more complex models that need local calibra-
tions. Approaches classified as mechanistic models (21%) define
the N rate based on a crop and soil simulation model, i.e., comput-
er-based tools that mathematically represent soil-crop-atmosphere
dynamics (Wallach et al., 2018). Approaches that define N rates by
applying artificial intelligence, i.e., algorithms and statistical mod-
els able to analyse big data to understand underlying patterns and
make inferences, were classified as machine learning (3%). Figure
2 shows the inputs for each group of algorithms. Most empirical
models use data from vegetation sensors (73% of algorithms),
often associated with N reference strips (67%) that define the opti-
mal crop vigour used as a target. Empirical models also use refer-
ence information/measurements about the crop (e.g., crop species,
developmental stage; 47%), weather (41%), soil (37%) and man-
agement (32%). Mechanistic models need more inputs compared
to empirical models. Common inputs of simulation models gener-
ally refer to data about the crop (94%), soil (100%), weather
(100%), and management (100%) that are needed to represent
agro-ecosystem processes mathematically; in only a limited num-
ber of cases, mechanistic models made use of remotely sensed data
about soil (3%) or vegetation (23%). Machine learning techniques
were used only in five recommendation systems, where spatially-
variable measurements coming from the crop (60%) and soil
(20%) sensors were used together with soil (80%), weather (40%),
and management (40%) data by paying more attention to costs
(40%) compared to the other algorithms.

Tables 3 and 4 describe in detail the recommendation systems
based on empirical and mechanistic models, respectively.

Empirical models
The majority of these algorithms (the first which appeared in

the literature) are regression models (37%) using sensor measure-

ments applied to vegetation (72%) to estimate N rate, N uptake or
to estimate crop yields from which to retrieve, in turn, N rates,
thanks to empirical N response functions. They have been pro-
posed mainly in the context of cereal crops (maize and wheat) in
the USA and EU, and they are characterised by fragmentation of
equations and inputs, a factor that contributed to the low level of
implementation in operational conditions. The most used methods
are from the Oklahoma State University (OSU; Solie et al., 2012)

                   Review

Table 3. Details about the algorithms classified as empirical models. The number and percentage of records, inputs used, starting year,
geographical distribution, and main crop are indicated for each algorithm. The percentage of records for each category is reported (no
number means 100%).

Reviewed         Records      Records              Inputs from                         Measured                     First         Country*               Crop*
algorithms          (n)             (%)             remote sensing                    data inputs                   year                  

Regression                       43                       37%              Soil (9%), Vegetation (72%),             Soil (23%), Plant (26%),                     2000                USA (56%),                Maize (58%),
models                                                                                               Yield (2%)                           Weather (9%), Yield (40%),                                           EU (21%)                  Wheat (26%) 
                                                                                                                                                      Management (26%), Costs (33%)                                                                                       
Oklahoma State              31                       27%                               Soil (9%),                                     Soil (15%), Plant,                           2006                USA (65%),                Maize (42%),
University algorithm                                                                       Vegetation                     Weather, Yield, N reference strips                                   China (13%),              Wheat (39%)
and modified                                                                                                                                                                                                                                India (13%)
versions                                                           
Nebraska State                12                       10%                               Soil (8%),                              Soil, Plant, Management,                    2010                USA (75%),                 Maize (75%)
University algorithm                                                            Vegetation, Yield (8%)             N reference strips, Costs (8%)                                         EU (25%)
Nutrient Expert               12                       10%                                       -                                     Soil, Plant, Weather (33%),                  2006               China (67%),               Maize (42%), 
                                                                                                                                                             Management, Costs (42%)                                             Indonesia                    Rice (39%)
                                                                                                                                                                                                                                               and Philippines (17%)
Chlorophyll meter           5                         4%                               Vegetation                             Plant, Management (33%)                    2006                       USA                        Maize (58%)
algorithms                           
Virginia Corn Algorithm  3                         3%                               Vegetation                           Weather, N reference strips                  2011                       USA                        Maize (63%)
Clemson University         3                         3%                           Soil, Vegetation                Plant, Weather, N reference strips            2011                       USA                       Cotton (63%), 
algorithm                                                                                                                                                                                                                                                                             Maize (37%)
MRTN                                  3                         3%                                        -                                         Soil, Plant, Yield, Costs                      2014                       USA                              Maize
N-mass balance                3                         3%                                        -                              Soil, Plant, Weather, Management,           2018               Brazil (33%),               Maize (63%)
                                                                                                                                                                          Costs (33%)                                                     Canada (33%), 
                                                                                                                                                                                                                                                       Turkey (33%)
*Countries and crops with more than 10% of studies.
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Figure 2. Spider chart showing input data to nitrogen recommen-
dation systems based on empirical models, mechanistic crop
models, or machine learning techniques. The data are represented
as the percentage of the total records of the group.
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and Nebraska State University (NSU; Holland and Schepers 2010).
They represent together 37% of empirical models. Their high dif-
fusion is explained by the fact that they are commercialised using
the vegetation sensors GreenSeeker (Trimble Inc., California,
USA) and Crop Circle (Holland Scientific, Inc., Nebraska, USA)
(Muñoz-Huerta et al., 2013). Both algorithms have been thorough-
ly reviewed (Samborski et al., 2009; Franzen et al., 2016); there-
fore, only the basic principles are reported here.

The OSU algorithm relies on two hypotheses: the NDVI (nor-
malised difference vegetation index of the crop measured in-sea-
son is a predictor of the yield; the NDVI can also estimate the yield
response to N. Thanks to proper calibrations, the measured NDVI
is converted into the crop expected yield with no N added. Then,
using local N-rich calibration strips (a small part of the field with
no N limitation from sowing), the crop yield response to N is esti-
mated so that the yield gap is calculated and the N rate defined.
Initially calibrated for winter wheat in the USA (Raun et al., 2005),
it has also been calibrated for maize in the USA (Teal et al., 2006),
then generalized (Solie et al., 2012) and tested for several crops
(Porter, 2010) and cropping systems (Virginia Corn Algorithm,
Thomason et al., 2011; North Dakota State University maize algo-
rithms, Franzen et al., 2014; Clemson University algorithm,
Khalilian et al., 2017). The various calibration equations and mod-
ifications of the original algorithm are reasons for its wide diffu-
sion.

The NSU algorithm is based on the parametrisation of a
quadratic or quadratic-plateau function describing the relationship
between N rate and yield, estimated by the sufficiency index. This
index is defined as the ratio between the vegetation index of the
actual field and the vegetation index of an N-rich strip (real or vir-
tual, Holland and Schepers, 2013). The producer establishes the
maximum N rate; recommended N rates are defined depending on
the sufficiency index, the parameters of the function, and the esti-
mated contribution from the soil N pool. The NSU algorithm was
proposed for maize in the USA. It accounts for 10% of the empir-
ical models reviewed here. Other plant-based algorithms have been
developed, mainly for maize in the USA, by relating chlorophyll
meter readings to recommended N rates (e.g., Kim et al., 2006).
Finally, we also recorded algorithms with no spatialized data
inputs: the maximum return to N (MRTN) approach, N-mass bal-
ance (Morris et al., 2018), and Nutrient Expert (Pampolino et al.,
2012). MRTN is well-known and considers costs, resulting in the
optimum economic N rates; it relies on multiple years and loca-
tions of maize N rate field trials specific for the USA (Melkonian

et al., 2008). On the other hand, Nutrient Expert is the most used
approach in Asian countries for cereals (rice, maize, and wheat).

Similarly to MRTN, Nutrient Expert has been developed from
regional nutrient response studies (Chim et al., 2017).
Requirements for macro-nutrients are estimated from the expected
yield response to each nutrient, which is the difference between the
attainable yield (the one achieved following the best practices) and
the nutrient-limited yield (estimated from nutrient omission trials).
The inputs needed are data of growing environment characteristics,
soil fertility indicators, management, and yields (Pampolino et al.,
2012).

Mechanistic and machine learning models
Mechanistic models are used in 21% of recorded cases. The

Adapt-N model is the most representative, being used in 42% of
studies on maize in the USA. The model incorporates high-resolu-
tion weather data and field-specific input information on soil, crop,
and management to estimate the recommended N rate during the
growing season. Adapt-N is based on the Precision Nitrogen
Management model, which simulates the growth of the crop, and
the LEACHN model for the simulation of soil water and N dynam-
ics (Melkonian et al., 2007). It is a web-based application devel-
oped by Cornell University, acquired by Yara International (Yara
International ASA, Oslo, Norway), recently adapted to produce N
recommendations for site-specific N management. Other crop
models are used for N recommendations, sometimes considering
spatial variability: STICS and APSIM for maize and wheat (e.g.,
Bourdin et al., 2017; Puntel et al., 2018, respectively) and CERES
for wheat and rice (Cui et al., 2017; Zhang et al., 2018, respective-
ly). When the crop models are spatialised to provide site-specific
N recommendations, the information from vegetation is used to
carry out the forcing of crop model (e.g., Guérif et al., 2007), while
the use of soil spatialised information from proximal sensing or
standard analysis is considered more than in the empirical models
(Figure 2). Also, costs are considered more frequently by recom-
mendation systems based on mechanistic models compared to
empirical algorithms.

Machine learning techniques are mainly used to integrate
empirical models with additional information. In fact, in two of the
five publications found, machine learning algorithms were used to
integrate weather and soil data that were not considered in the orig-
inal studies (Ransom, 2018; Ransom et al., 2019). Furthermore, in
one study, they were used to define N recommendation using spa-
tialised vegetation monitoring integrated with soil measured char-

                                                                                                                                Review

Table 4. Details about the algorithms classified as mechanistic models. The number and percentage of records, inputs used and starting
year, geographical distribution, and main crop are indicated for each algorithm. The percentage of records for each category is reported
(no number means 100%).

Reviewed         Records      Records              Inputs from                         Measured                     First         Country*               Crop*
algorithms          (n)             (%)             remote sensing                    data inputs                   year                  

Adapt-N                                13                         42%                                          -                                  Soil, Plant, Weather, Management,              2007                         USA                                 Maize
                                                                                                                                                                                    Costs (23%)                                       
APSIM                                    5                          16%                                Soil (20%),                                     Soil, Plant, Weather,                           2009                  USA (80%),                   Maize (80%) 
                                                                                                             Vegetation (40%)                          Management, Costs (40%)                                            Australia (20%)               Wheat (20%)
STICS                                     4                          13%                          Vegetation (50%)                                Soil, Plant, Weather,                           2007               Canada (50%),                Maize (50%) 
                                                                                                                                                                       Management, Costs (25%)                                                  EU(50%)                     Wheat (50%) 
CERES                                   2                           6%                            Vegetation (50%)                                Soil, Plant, Weather,                           2017                       China                          Rice (50%) 
                                                                                                                                                                       Management, Costs (50%)                                                                                        Wheat (50%)
Others                                   7                          23%                                Soil (14%),                                     Soil, Plant, Weather,                            2013                  USA (43%),                   Maize (57%) 
                                                                                                             Vegetation (29%)                         Management, Costs (14%)                                                 EU (43%)                     Wheat (29%)
*Countries and crops with more than 10% of studies.
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acteristics (Tremblay et al., 2010), confirming the trend for deeper
data integration.

What is the temporal and geographical diffusion of
these methods?

Figure 3 reports the temporal evolution of the recorded studies.
Empirical models were the first type of algorithms used, with

a gradual increase since 2000. The years 2005 and 2010 corre-
sponded to the publication of the OSU algorithm (Raun et al.,
2005) and the NSU algorithm (Holland and Schepers, 2010).

Starting from 2012, studies involving Nutrient Expert (Pampolino
et al., 2012) were published, contributing to the peak registered in
2017. Mechanistic methods appeared in 2006, but only after 2015
was there a marked increase, with a maximum in 2017. Machine
learning reports have increased very recently, from 2017 to 2020.
This evolution is likely linked to the greater availability of large
data sets, essential for the algorithm training phase, along with the
increase in computing capacity.

The geographical distribution of the recorded studies is shown
in Figure 4.

                   Review

Figure 3. The number of papers describing a nitrogen recommendation system by type of algorithm and by year.

Figure 4. Map of the geographical distribution of the selected nitrogen recommendation systems. Countries with three or more studies
are represented in blue (from light to deep blue) with the indication of the number of total studies. For countries with five or more
studies, the statistics about the types of algorithms and the crops are presented with a pie chart and a table, respectively.
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Most of the algorithms were developed and used in the USA,
where empirical approaches (Raun et al., 2005; Holland and
Schepers, 2010; and their variants) were predominant compared to
mechanistic models. Also, publications in the EU mostly involved
using empirical regression models. However, mechanistic solu-
tions were different: Adapt-N (Melkonian et al., 2008) was the
most used in the USA, while in the EU, no specific crop model was
predominant (Guérif et al., 2007; Granados et al., 2013; Bourdin et
al., 2017; Ravier et al., 2018; Morari et al., 2020; Table 4). In
Asian countries, empirical models represented the majority of the
approaches used (82% and 80%, respectively), while the use of
mechanistic models was very limited; Nutrient Expert (Pampolino
et al., 2012) was the most used algorithm, while 44% of empirical
approaches consisted in attempts to calibrate the algorithms devel-
oped in the USA. Finally, studies conducted in China and India had
the highest number of machine learning approaches (Figure 4).

What advanced solutions can be identified in nitrogen
recommendation systems?

Our presented work also aimed at identifying ‘advanced solu-
tions’ in defining N doses. Four solutions were found:
sensor/approach fusion, algorithm add-ons, environmental bene-

fits, and multi-objective decisions. They were intended as attempts
to account for the complexity of data coming from different mon-
itoring systems (i.e., sensor/approach fusion, algorithm add-ons)
and for the different impacts of N fertilization in the agro-ecosys-
tem (i.e., environmental benefits and multi-objective decisions).

Figure 5 shows the abundance of each type of advanced solu-
tion, separately for the two datasets: publications with (Figure 5A)
and without (Figure 5B) N recommendation systems.

‘Sensor/approach fusion’ and ‘algorithm add-ons’ were the
most explored solutions (40-44% and 30%, respectively). In the
publications proposing an N recommendation system,
‘sensor/approach fusion’ mainly consisted in using the proposed
algorithm differently for different management zones defined by
soil variability (60% of the papers), while in the group of publica-
tions with estimates of N-related variables without defining N
doses, it involved the use of more complex combinations such as
crop models, machine learning and/or crop monitoring to give bet-
ter predictions. Only the publications proposing an N recommen-
dation system were analysed by considering the advanced solu-
tions by algorithm type (Figure 6).

Within publications describing empirical algorithms, ‘algo-
rithm add-ons’ accounted for 41% of advanced solutions. These
solutions account for the variability not considered in the original

                                 [Italian Journal of Agronomy 2022; 17:1951]                                                   [page 17]
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Figure 5. Percentage and number of publications (n=66) by type of advanced solution adopted. A) Publications with N recommendation
systems; B) Publications without N recommendation systems.

Figure 6. Frequency (%) of adopting advanced solutions by type of algorithm within the publications describing N recommendation
systems (n=46).
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version of the algorithm or the reference estimation method. In
most cases, these solutions used weather- or soil-correcting factors
to improve the prediction (e.g., Bean et al., 2018). The advanced
solutions involving environmental benefits (10%) and multi-objec-
tive decisions (7%) are represented by algorithms explicitly con-
sidering N losses (e.g., Gramig et al., 2017; Lindblom et al., 2017)
and taking decisions considering environmental and productive
outcomes, respectively. The number of these solutions increased in
the most recent years. Conversely to the studies involving empiri-
cal models, environmental effects (three studies; 21%) and multi-
objective decisions (three studies; 21%) (e.g., Mesbah et al., 2018;
Moeller et al., 2009) were more frequently addressed with mecha-
nistic models. On the other hand, since mechanistic models already
need a high number of input data, the algorithm’s ‘add-on’ strategy
was rare (one study, 7%). Machine learning did not consider envi-
ronmental outcomes, probably because of the unavailability of a
sufficient amount of data to implement the algorithms.

To better clarify what can be done practically to integrate data
in recommendation systems, we have identified three examples at
increasing levels of complexity: i) combine free remote sensing
products with low-cost proximal sensors as inputs to an empirical
N recommendation system (‘sensor fusion’); ii) combine empirical
N recommendation systems with machine learning techniques to
add knowledge about field properties (‘algorithm fusion’); iii)
combine soil and crop sensing (either proximal or remote) with a
crop model (‘high-level data integration’).

Nutini et al. (2018) provided an example of the ‘sensor fusion’
strategy by mixing satellite crop monitoring with smart apps for
field scouting and site-specific N recommendation. They used free
Sentinel-2 satellite products to drive field data acquisitions using
smartphones as sensors to estimate crop N requirements (low,
medium, high). The proposed solution is cost- and time-effective,
widely applicable in operational workflows, but needs calibration
of regression curves specific by rice variety group (Paleari et al.,
2019), and does not account for soil and weather variability.

Ransom et al. (2019) developed an example of the second
approach (‘algorithm fusion’). They incorporated soil and weather
variables into an empirical N recommendation system via machine
learning, obtaining better estimates of the economically optimum
N rate than the original system and proving that the N recommen-
dation system takes advantage of added soil and weather variables.
However, a limitation of this system is the high number of input
data required and the empiricism of the method that could limit its
applicability.

Jin et al. (2019) worked with the third option (‘high-level data
integration’): they combined remote sensing, soil properties, and a
crop model to derive N recommendations. The system retrieved
field management zones using yields estimated from satellite-
derived vegetation index and weather. The crop model APSIM
used the state soil national database inputs and simulated yields
and N losses at various N rates. This system offers high-level data
integration and multi-objective decision-making based on econom-
ic and environmental outcomes. Its main limitations are the diffi-
culty of yield estimation and accurate retrieval of soil properties
for sub-field scales. Therefore, it was not tested on commercial
fields.

The three methods have some features in common: i) they need
calibration of increasing complexity before they can be applied in
operational conditions; ii) they need to consider spatial and tempo-
ral field variability; iii) they valorise the large data sets that are
being made available by monitoring campaigns. 

What are the knowledge gaps that limit the adoption of
these systems?

One of the main issues linked to the limited application of N
recommendation systems in operational conditions is represented
by the type of algorithms proposed. Empirical models are the most
studied but require calibration whenever they are applied in condi-
tions other than those used for their setup. This is a severe limita-
tion to their adoption. Moreover, these algorithms have been devel-
oped to be used with specific optical sensors, making their exten-
sion to other sensors cost- and time-consuming. Recent efforts
have been made to develop different algorithms based on mecha-
nistic models and machine learning (Morris et al., 2018). They
need large inputs datasets because they mathematically or statisti-
cally represent the interaction among soil, plants and weather.
However, the more significant effort needed to collect input data
should correspond to greater applicability of these algorithms.
Despite this, their use is frequently limited to research applica-
tions. The Adapt-N is the only mechanistic algorithm that has had
a commercial interest. It is used for maize in the USA, where it was
developed. It was not initially developed for site-specific manage-
ment (Melkonian et al., 2008).

Moreover, coupling spatialised data with crop models has not
yet been fully addressed. The process still has issues related to
identifying the correct scale of processes, the selection, and inte-
gration of spatialised variables, their use, and the ability of the
algorithm to manage uncertainty at different scales. In conclusion,
one severe limitation is the poor ability of the algorithms to inte-
grate different data sources. Our analysis showed a trend of devel-
oping advanced solutions. However, more efforts could be put in
place.

Current and future perspectives
With the current availability of tools, precision N management

can be carried out using empirical recommendation systems.
However, this requires extensive fieldwork for their calibration.
For example, specific guidelines are available to calibrate the OSU
system (https://nue.okstate.edu/Hand_Held/New_N_Strategy.
htm). This involves the implementation of field experiments with
monitored no-nitrogen and N-rich strips in different locations. The
NDVI is measured at side-dressing for these treatments, and crop
yield is measured at harvest. Alternatively, if one wants to use a
more mechanistic solution, current crop models can be applied by
coupling them with a customised decision support system. For
example, Morari et al. (2020) have developed a decision support
system based on the SiriusQuality model. When this coupling has
been already realised, the system can be applied in different condi-
tions, provided that input data are available, either directly via
built-in data recovery functions or provided by the user.

Future research should focus on data and algorithm fusion and
on proving the proposed algorithms’ economic, agronomic and
environmental benefits at farm scales. In fact, nowadays, big data
are produced by precision agriculture techniques and Agriculture
4.0, thanks to the use of new soil and crop monitoring techniques
together with reference measurements of soil and weather proper-
ties. Better integration of several types of data, sensors, and algo-
rithms could be carried out to valorise field data and help the large-
scale application of algorithms. On the other hand, the level of
complexity of the algorithms must meet the knowledge and practi-
cal needs of farmers. In fact, some reviewed published works
demonstrated that more attention during the research process
should be paid to overcoming the problems of implementation of
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N recommendation systems by developing friendly interfaces
(Lindblom et al., 2017). Another factor that will allow wider adop-
tion of N recommendation systems is their capability to calculate
and report the economic, agronomic and environmental advan-
tages of precision compared to conventional management. This
will require specific research actions to measure these advantages
in the field and disseminate them.

Conclusions
In the past twenty years, many studies have been carried out to

develop N recommendation systems. Many of them propose
empirical N recommendation algorithms that depend on specific
calibration conditions; therefore, they cannot be easily extended to
soils, climates, and crops, which differ from those where their cal-
ibration was carried out. On the other hand, mechanistic or
machine learning algorithms are hardly spatialised enough to pro-
vide site-specific N recommendations. In addition, information
about soil properties, crops and weather data, and environmental
outcomes is not yet fully integrated, with the result that most cur-
rent algorithms do not valorise field data. Following the trend
already visible in the literature, future research must overcome the
specificity of current algorithms and maximize the integration
among high-resolution monitoring data sets.
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