
Abstract
Remote sensing using unmanned aerial vehicles (UAVs) for

weed detection is a valuable asset in agriculture and is vastly used
for site-specific weed control. Alongside site-specific methods,
time-specific weed control is another critical aspect of precision
weed control where, by using different models, it is possible to
determine the time of weed species emergence. This study com-
bined site-specific and time-specific weed control methods to
explore their collective benefits for precision weed control. Using
the AlertInf model, a weed emergence prediction model, the
cumulative emergence of Sorghum halepense was calculated, fol-
lowing the selection of the best date for the UAV survey when the
emergence was predicted to be at 96%. The survey was executed
using a UAV with visible range sensors, resulting in an orthophoto
with a resolution of 3 cm, allowing for good weed detection. The
orthophoto was post-processed using two separate methods: an

artificial neural network (ANN) and the visible atmospherically
resistant index (VARI) to discriminate between the weeds, the
crop, and the soil. Finally, a model was applied for the creation of
prescription maps with different cell sizes (0.25 m2, 2 m2, and 3
m2) and with three different decision-making thresholds based on
pixels identified as weeds (>1%, >5%, and >10%). Additionally,
the potential savings in herbicide use were assessed using two her-
bicides (Equip and Titus Mais Extra) as examples. The results
show that both classification methods have a high overall accura-
cy of 98.6% for ANN and 98.1% for VARI, with the ANN having
much better results concerning user/producer accuracy and
Cohen’s Kappa value (k=83.7 ANN and k=72 VARI). The reduc-
tion percentage of the area to be sprayed ranged from 65.29% to
93.35% using VARI and from 42.43% to 87.82% using ANN. The
potential reduction in herbicide use was found to be dependent on
the area. For the Equip herbicide, this reduction ranged from 1.32
L/ha to 0.28 L/ha for the ANN; with VARI the reduction in the
amounts used ranged from 0.80 L/ha to 0.15 L/ha. Meanwhile, for
Titus Mais Extra herbicide, the reduction ranged from 46.06 g/ha
to 8.19 g/ha in amounts used with the ANN; with VARI the
amount reduction ranged from 27.77 g/ha to 5.32 g/ha. These pre-
liminary results indicate that combining site-specific and time-
specific weed control might significantly reduce herbicide use
with direct benefits for the environment and on-farm variable
costs. Further field studies are needed for the validation of these
results.

Introduction
Since its early beginnings, agriculture has constantly been

changing and evolving, and the same trend continues to this day
(Thrall et al., 2010). The human population has been cultivating
plants throughout the ages, always searching for an economical
and environmentally sustainable way to produce. For this purpose,
different tools, equipment, and crop management practices have
been created (Lobley and Potter, 2004; Gaillard, 2005; Paul and
Nehring, 2005; Ricroch et al., 2014). Weeds, the unwanted plants
that spontaneously emerge alongside crops, are one of the biggest
constraints to crop production. Because of their biology and evo-
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Highlights
- Efficacy of UAVs and emergence predictive models for weed control have been confirmed. 
- Combination of time-specific and site-specific weed control provides optimal results.
- Use of timely prescription maps can substantially reduce herbicide use.
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lutionary path, they are more competitive than traditional crops,
and therefore, they have a detrimental effect on crop yield
(Radosevich et al., 2007; Holt, 2013; Lingenfelter and Hartwig,
2013). Weeds can cause serious losses by competing for natural
resources but can also serve as potential hosts for various harmful
organisms (Radosevich et al., 2007; Zimdahl, 2007; Cerrudo et al.,
2012). In some cases, the percentage of yield loss caused by weeds
can reach up to 84% (Imoloame and Omolaiye, 2017). Because the
negative economic impact is measured in billions per year (Soltani
et al., 2016), it is not surprising that significant effort has been
placed into finding the best way to control these unwanted plants.
Today, the measures used for weed control can mostly be grouped
into two categories. Mechanical control, which involves the use of
different tools and machines to remove and/or destroy weeds
mechanically; and chemical control, which involves the use of dif-
ferent chemical formulations (herbicides), with the same aim
(Arriaga et al., 2017; Peruzzi et al., 2017; Zimdahl, 2018). Other
important weeds controlling techniques also include agronomic,
physical, and cultural weed control. It is important to mention crop
rotation and row spacing for agronomic techniques, while physical
methods may include using the heat for weed control, such as
using the flames or steam (Astatkie et al., 2007). Finally, cultural
methods involve selecting the right variety, cultivar, or hybrid that
can compete with plants and maybe even help the weed suppres-
sion, for example growing faster and creating the canopy that can
shade the weeds (Melander et al., 2005). Although mechanical
agronomic, physical and cultural weeding measures can be very
efficient, they are not as effective as chemical weed control meth-
ods and should be used as a part of a holistic approach (Mohler,
1996; Weis et al., 2008). Furthermore, mechanical measures tend
to be reduced or completely removed from newer production man-
agement systems, such as conservation agriculture, due to negative
impacts such as soil compaction and disturbance. In addition, these
operations may raise the production costs (e.g. machine mainte-
nance, fuel) and can also lengthen the times of agricultural produc-
tion, considering different tillage operations that are necessary for
the soil preparation before sowing (Raghavan et al., 1990; Idowu
and Angadi, 2013; FAO, 2014; Arriaga et al., 2017; Hussain et al.,
2018). Therefore, chemical control methods have become the
dominant technique for weed control, and in cases like conserva-
tion agriculture, it is one of the few effective means of weed con-
trol. The above means that the use of herbicides is always on the
rise and has been on an upward trend since their introduction
(FAO, 2014; Vats, 2015; Zimdahl, 2018). However, the use of her-
bicides has several negative effects on the environment brought on
by leaching into soil and groundwater (Tiktak et al., 2004;
Gimsing et al., 2019). This potentially leads to soil and water con-
tamination, putting wildlife biodiversity at risk, and it can also be
harmful to humans (Morales et al., 2013; Hasenbein et al., 2017;
Gupta, 2018; Beasley, 2020). Herbicides can also enter the food
chain via residues found on food and may have serious adverse
implications (Morales et al., 2013; European Food Safety
Authority, 2018). Today, the process of creating new herbicides is
very slow due to the strict protocols imposed by the international
organization’s legislations such as FAO/WHO (FAO/WHO, 2016a,
2016b), and by national and supranational laws regulating produc-
tion and the use of pesticides, e.g., European Parliament (2009); in
order to reduce the negative effects that future herbicides may have
(Lyon et al., 1996; Kudsk and Streibig, 2003). However, this harms
traditional herbicide application due to the development of weed
resistance to herbicides currently in use (Heap and LeBaron, 2001;
Holt, 2013; Sherwani et al., 2015). All things considered, the use
of herbicides in agriculture needs to be reshaped to guarantee their

effectiveness and the stability of agricultural production and
reduce environmental impact. One of the possible solutions to this
problem could be the implementation of precision agriculture,
which could enable the reduction of herbicides by applying them
only where and when needed, thanks to the technological progress
and innovative tools available for weed detection (Lyon et al.,
1996; Zarco-Tejada et al., 2014). Current limitations to the use of
precision weed control in the field are the identification of weeds
and the associated decision support systems. However, among pre-
cision farming adopters, Ayerdi Gotor and colleagues (Ayerdi
Gotor et al., 2020) have demonstrated that there is still poor use of
these techniques for weeding. Given that weeds do not appear uni-
formly in space nor in time (Radosevich et al., 2007; Zimdahl,
2007; Martín et al., 2015; Santín-Montanyá et al., 2015), it is
important to address this issue from both the spatial and temporal
points of view (Forcella et al., 2000; Gerhards, 2013). Mapping the
weeds in space has never been easy (Hanzlik and Gerowitt, 2016),
but the development of unmanned aerial vehicles (UAVs) simpli-
fies this task (Herwitz et al., 2004; Giacomo and David, 2017). For
this purpose, some additional aspects could be exploited, such as
the 3D model (Digital Surface Model), where the different heights
of weeds and crops are used to discriminate between them
(Stroppiana et al., 2018). In fact, some studies worldwide have
started implementing UAVs for weed mapping as a part of preci-
sion agriculture, with auspicious results (López-Granados, 2011;
Ballesteros et al., 2014; Hassanein and El-Sheimy, 2018; Huang et
al., 2018; Lambert et al., 2018; Maes and Steppe, 2019).
Depending on the flight altitude and the sensors used, UAVs can
provide images with a resolution of a few centimetres or less than
a centimetre, allowing for useful weed classification (Torres-
Sánchez et al., 2013; Koot, 2014; Bareth et al., 2015; Candiago et
al., 2015; Pérez-Ortiz et al., 2015). Moreover, images obtained in
this way can serve as a basis for further analysis of spatial weed
distribution (Borra-Serrano et al., 2015; Pérez-Ortiz et al., 2016).
Weed emergence models have already been developed (Myers et
al., 2004; Colbach et al., 2007; Dorado et al., 2009), to identify
correct time for an effective weed control. The introduction of such
models in decision support programs can reduce herbicide use and
weed control costs when compared with standard management
practices (Forcella et al., 2000). These models provide the percent-
age of cumulated emergence reached every day by weed species,
and this information can be used to select the best timing for
mechanical or chemical weed control methods to achieve maxi-
mum efficacy. One of these models, named ‘AlertInf’ was devel-
oped in Italy by Masin and colleagues (Masin et al., 2010). It uses
the hydrothermal time concept (Bradford, 2002), in which the
combination of soil temperature and soil water potential is the
main factor driving germination (Masin et al., 2010, 2012, 2014).

To our knowledge, no study (or very few studies) in the scientific
literature so far have addressed the combination of spatial and temporal
weed detection. This study aims to bridge this gap and investigate the
possible benefits of combining spatial and temporal approaches for pre-
cision weed control. In this experiment, UAVs were used to map the
weeds present in a field, which were later identified with the help of
spatial analysis software within a geographic information system
(GIS). Afterward, based on the weed location results, prescription maps
were created to support site-specific weed control. The main novelty of
our approach was to use the AlertInf model to predict the cumulative
emergence of weed species present in the field, providing time-specific
weed control, thereby allowing us to define the best flight date to map
the weeds. Eventually, the possible reduction of herbicide use was
assessed by implementing and combining site-specific and time-specif-
ic weed control techniques. 

                   Article
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Materials and methods

Study site
The experiment was conducted at the experimental farm

‘Lucio Toniolo’ of the University of Padova at Pozzoveggiani
locality, within the province of Padova in the Veneto region (north-
eastern Italy). The field morphology is flat, and the soil is classi-
fied as Fluvic Cambisol (FAO, 2006). The local climate is sub-
humid with an average temperature of 12°C and 800-850 mm of
rainfall, mostly during the autumn and spring months, based on the
Regional Agency for Environmental Protection (ARPA) data. In
this field, a hybrid of maize (DKC 5530) was sown on the 7th of
June 2019 with 75 cm interrow and 15 cm in-row spacing, while
the previous culture was soybean Pioneer hybrid PR92M22, har-
vested on 11th of October 2018. This late sowing date was due to
unfavourable meteorological conditions during the late
spring/early summer period. Prior to sowing, different tillage oper-
ations, commonly employed for soil preparations, were performed.
On the 9th of January 2019, weeding was performed using a grub-
ber, on the 26th of February 2019, 53 kg N/ha was applied as
manure, corresponding to 36 Mg/ha of raw manure, on the 4th of
March 2019, false sowing was executed using the rotary harrow,
on the 4th of June 2019 shredding was implemented using a tiller,
and on the 5th of June 2019, a rotary harrow was used. 

Unmanned aerial vehicles survey 
The flight was performed with the Matrice 100 UAV, coupled

with DJI X3 and DJI X5 visible sensors (DJI Sciences and
Technologies Ltd., Shenzhen, China), on the 19th of June 2019
when maize was at 10-11 BBCH stage. The flight was executed at
the height of 35 m from the ground over an area of 1 ha, providing
an orthophoto with a resolution of 3 cm. The orthomosaic was cre-
ated with Pix4D software using the projected coordinate system of
the Gauss Boaga Monte Mario Italy Zone 1 (EPSG:3003). The
result was an accurate orthophoto allowing a relatively easy dis-
tinction between weed species and the surrounding elements
(Figure 1).

Weed classification methodologies 
Two different approaches were tested for weed classification:

an artificial neural network (ANN) (OpenCV) using the SAGA
GIS open-source software (version 7.6.2), and the visible atmo-
spherically resistant index (VARI) using ArcGIS Pro software (ver-
sion 2.2.0 ESRI - Environmental Systems Research Institute,
Redlands, CA, USA). 

The OpenCV algorithm operates by performing a backpropa-
gation, one of the most widely used methods for training artificial
neural networks for various purposes (Sözen et al., 2004; Murat
and Ceylan, 2006; Elmolla et al., 2010; Turan et al., 2011).
Backpropagation is an iterative process that consists of making a
backward pass after each forward pass through the network while
making the relevant adjustments to the model’s parameters, name-
ly weights and biases (Rumelhart et al., 1986). These adjustments
are performed based on the training dataset; meaning, the classifi-
cation process is stopped when the difference between the neural
network classification and the training dataset is minimized. From
an operational point of view, this is achieved when the difference
between two subsequent iterations is lower than a certain thresh-
old, or the prearranged maximum number of iterations is reached.
The algorithm requires two inputs: i) grid (raster) data, which are
represented by the red, green, and blue (RGB) bands of the

orthophoto obtained from the drone survey; and ii) the vector data
defining the training areas, which are the detection targets. The
detection targets (or labelled samples) were defined by manually
tracing some of the weed spots as a polygon shapefile, in particular
11 polygons were traced scattered across the field comprising both
single weeds and group of weeds in cases where they emerged
closely, and a single weed couldn’t be traced, the total area of these
polygons was 2.21 m2. The parameters to be set are: i) the number
of hidden layers of the neural network; ii) the number of neurons
of the hidden layers; iii) the process stopping criteria (i.e., the max-
imum number of iterations and the minimum difference between
the iteration thresholds); and iv) the activation function and learn-
ing rate parameters. Altogether, these parameters determine the
structure and functioning of the OpenCV ANN (OpenCV, 2014). 

The VARI index was developed by a group of scientists at the
University of Nebraska, and its primary purpose is to calculate the
vegetation indices whilst reducing the influence of atmospheric
interference. It is based on a combination of the visible spectral
bands (Formula 1) (Gitelson et al., 2002).

VARI = (Green-Red)/(Green+Red-Blue)                                 (1)

The VARI index is used for different purposes, mainly for mea-
suring leaf area index (LAI) (Gitelson et al., 2003), as well as for
monitoring crop health and even estimating fire hazard potential
(Schneider et al., 2008; McKinnon and Hoff, 2017). However, in our
research, the authors have not found references for the use of this
index in weed detection. Similar to the OpenCV ANN, VARI was
also computed on grid (raster) data, that is, RGB bands of the

                                                                                                                                 Article

Figure 1. Sample of the orthophoto obtained (19 June 2019).
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orthophoto obtained from the drone survey. The VARI index is
designed to be minimally sensitive to atmospheric effects (Gitelson et
al., 2002; Schneider et al., 2008). As so, we computed it directly on
the raw digital number values of the UAV images, i.e., without con-
verting to reflectance. In addition, the flight conditions were constant.
However, for further comparison, the illumination conditions might
be considered to test the transferability of the method. In the derived
raster, each pixel was attributed with a VARI value ranging from –
0.16 to 1.67. The raster was then classified into five classes using the
optimization algorithm defined by Jenks. This algorithm minimizes
the standard deviation within the single classes (i.e., the differences
within each class) and maximizes the differences among classes, thus
identifying so-called ‘natural breaks’. The Jenk’s algorithm is sug-
gested to provide neutral class delineation in early spatial data mining
(Murray and Shyy, 2000; Irigaray et al., 2007). Subsequently, it was
necessary to conduct a reclassification to achieve only two cate-
gories: non-weed and weeds. To this end, we identified the threshold
value for pixels identified as weeds by visually comparing the origi-
nal orthophoto to the one with VARI values. Non-weed categories
were the first three classes, corresponding to the interval of values –
0.16≤ non-weed <0.08, while the weed categories were the last two
classes, corresponding to the interval 0.081≤ weed ≤1.67. The,
Reclassify (Spatial Analyst) tool integrated into ArcGIS Pro was used
to reclassify the pixels into two categories, non-weed, and weed. 

Accuracy assessment 
Image classification is one of the most frequently performed anal-

yses on remote sensing data; because of this, classification accuracy
has been widely addressed in the literature (Foody, 2008).
Nonetheless, there is still an open debate about the multiple accuracy
methods developed so far in the scientific community. A widely estab-
lished method for accuracy assessment is the confusion matrix
(Foody, 2002), which essentially allows the comparison of classified
values with reference values (called ‘field truth’ or ‘ground truth’)
using a contingency table (Cohen, 1960). In this study, the confusion
matrix was computed within the SAGA GIS open-source software
(version 7.6.2). For each class, two in this case (i.e., weed and not-
weed), the number of pixels is compared with those from the reference
data (Story and Congalton, 1986). Reference data were produced by
an expert classification through photointerpretation on the orthomosa-
ic and was used to assess both methods. The accuracy assessment
based on the confusion matrix included the computation of the overall
accuracy, the commission error (false positive rate) and the omission
error (false negative rate), as well as Cohen’s Kappa that estimates the
accuracy net of values due to chance (Congalton, 1991). 

Estimation of weed emergence percentage 
From the data gathered during the ground surveys seven days

after sowing, when maize was in the initial growing stage (9-10
BBCH scale), that included the scouting for the weed species pre-
sent, it was determined that plant infestation in the field was com-
posed almost exclusively of Sorghum halepense. In order to deter-
mine the best time for a UAV survey, an AlertInf emergence pre-
dictive model was used. The soil temperature and daily precipita-
tion levels comprised the AlertInf input data. Both the soil temper-
ature, at 5 cm depth, and precipitation data were obtained from the
meteorological stations of the Regional Agency for Environmental
Protection (ARPA), located near the experimental field. Based on
the data concerning the biology of Sorghum halepense and the
meteorological data, AlertInf produced a cumulative emergence
curve, showing the percentage of seedling emergence reached by
the species relative to each day (Figure 2). 

Prescription maps 
Creating prescription maps was a three-stage process per-

formed with ArcGIS Pro ModelBuilder, integrated into the ArcGIS
Pro software (Figure 3). The first stage consisted of creating a pre-
cision spraying grid by dividing the field into regular cells. The
cell size was chosen after considering the fundamental factors that
determine the base area coverage for a sprayer: i) the spraying
angle; ii) the altitude of the boom; and iii) the possibility of con-
trolling a single nozzle or a boom section (Bajwa, 2014; Gonzalez-
de-Soto et al., 2016; Kluza et al., 2019; Partel et al., 2019). Next,
three different cell sizes were defined based on the technical spec-
ifications of the most common models of sprayers for precision
spraying available in the region (Toselli Srl; Kuhn Italia S.R.L.;
Lemken GmbH & Co. KG). These cell sizes were: 3.00 m2, 2.00
m2, and 0.25 m2 (Figure 4). The second stage comprised selecting
the pixels classified as weeds in the outputs of the two weed clas-
sification methods (i.e., OpenCV ANN and VARI). Finally, in the
third stage, each precision spraying grids intersected with the weed
classification output to quantify weed infestation per cell. From
here, each cell was classified: i) to be sprayed; or ii) not to be
sprayed according to the weed infestation ratio. This classification
was based on the three decision-making thresholds for spraying:
more than 1%, more than 5%, and more than 10% of the pixels
within a cell identified as weeds. 

                   Article

Figure 2. Cumulated emergence (%) of Sorghum halepense in the
field in 2019, simulated by the Alertinf model.

Figure 3. Prescription map creation workflow, N is the number of
inputs/outputs used/produced during the creation of prescrip-
tion maps. 
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Herbicide use assessment 
The prescription maps issued from the previous step were used

to assess the potential herbicide use reduction for the different clas-
sification methods and decision-making scenarios. For this pur-
pose, two herbicides were considered, both registered in Italy for
use in maize fields and the chemical control of Sorghum halepense
(Banca dati dei prodotti fitosanitari, 2020). The first one was Equip
(Foramsulfuron 2.33% = 22.5 g/L, Isoxadifen-ethyl 2.33% = 22.5
g/L), with a recommended dose of 2.3 L/ha, corresponding to
53.75 € on the market, and the second one was Titus Mais Extra
(Nicosulfuron p.a. pure 30 g, Rimsulfuron p.a. pure 15 g,
Coformulants q.b. 100 g), with a recommended dose of 80 g/ha,
corresponding to 37.50 €. The prices are indicative of the 2020
market price. The quantity for each herbicide (litres and grams)
was calculated based on the area to be sprayed according to pre-
scription maps and knowledge of how much product is needed for
the whole field area, using simple proportions. Then, following the
same procedure, treatment costs were calculated. In this way, both
the reduction in the quantity of herbicides used and the related
variable costs were obtained. 

Results and discussion
Using the AlertInf model, the cumulative emergence percent-

age for Sorghum halepense in the experimental field was obtained.
It was decided to carry out the survey with the UAV on the date
that AlertInf predicted 96% of species emergence, allowing for a
good mapping and efficient weed control operations. The date was
also suitable considering meteorological parameters for the drone
flight, phenological stage of the crop, and planned agronomical
operations. 

The OpenCV ANN method outperformed the VARI method in
weed classification. In particular, the ANN showed a commission
error (false positive) for weed classification almost five times
lower than the VARI. However, the OpenCV ANN algorithm
underestimated the weed occurrence compared to VARI, with an
omission error (false negative) of 19.4% versus 6.0%, respectively.
The difference in commission/omission error between the two
methods could also be one of the reasons to impact choosing one
method over the other. From the environmentalist point of view, it
is probably better to use the OpenCV ANN that would indicate
lesser use of herbicides even if it means letting some of the weed
plants survive. From the farmers’ point of view, however, it is
probably better to use the VARI method, that although it proposes
the higher use of herbicides, it would also eliminate more weed,
which could negatively impact the final yield if they are left
untreated. Altogether, the overall accuracy of both classification
methods is very high and quite similar, with 98.6% for OpenCV
ANN and 98.1% for VARI classification. However, Cohen’s
Kappa indicated that the OpenCV ANN stands a greater chance of

being accurate than the VARI thresholding (Table 1).
The combination of three precision spraying grids and three

spraying thresholds produced nine prescription maps for each of
the two orthomosaic classification methods: OpenCV ANN
(Figure 5) and VARI (Figure 6).

Decision-making thresholds were chosen arbitrarily, consider-
ing the format of the data used, the weed species present, and the
agronomic information available. There are different kinds of
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Table 1. Accuracy assessment of the OpenCV ANN and VARI weed classification methods. 

Classification method      Classes                Commission error             Omission error           Overall accuracy (%)        Cohen’s Kappa (%)
                                                                       (false positive, %)                                                   (false negative, %)                          

OpenCV ANN                                  Weed                                        11.8                                              19.4                                               98.6                                               83.7
                                                       No-weed                                      1.0                                                0.5                                                                                                          
VARI                                                  Weed                                        40.2                                               6.0                                                98.1                                               72.0
                                                       No-weed                                      0.2                                                1.8                                                                                                          
ANN, artificial neural network; VARI, visible atmospherically resistant index.

Figure 4. Sample of precision spraying grid with three cell sizes:
3.00 m2 (A), 2.00 m2 (B), and 0.25 m2 (C).

Figure 5. Comparison of the prescription maps for the OpenCV
artificial neural network classification method. Examples for the
5% threshold for three cell sizes to be sprayed, namely: 3.00 m2

(A), 2.00 m2 (B), and 0.25 m2 (C).
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thresholds and it is important to choose the most suitable one for
the data being used (Coble and Mortensen, 1992). The most com-
monly used threshold is based on weed density, where the decision
to spray is based on the number of weeds per area, which can be as
low as 0.05 weeds/m2 for some weed species (Auld and Tisdell,
1987; Zanin et al., 1994; Sartorato et al., 1996). For Sorghum
halepense, this threshold is one plant per square meter (Roberts
and Hayes, 1989; Ghoshen et al., 1996). Due to the inability to
effectively count plants, considering that the datum is expressed in
pixels, the thresholds have been translated into percentages of pix-
els marked as weeds in a specific area. This was performed in a
manner like that used in the study done by López-Granados and
colleagues (López-Granados et al., 2016), where the chosen
thresholds ranged from 0% to 15% of the pixels marked as
weed/m2. The three thresholds chosen are also very low because
the cell sizes are smaller or greater than 1 m2, which is not an iso-
lated case (Mortensen et al., 1995; Keller et al., 2014).

Nevertheless, it requires thoroughly considering the thresholds
to use, making them comparable between different prescription
maps created. These maps allowed for a comparison between the
different cell sizes and decision-making thresholds and between
the two classification methods. The possible reduction of the area
to be sprayed and the differences in the area classified for spraying
between the two classification methods were calculated for a field
1 ha large (Table 2).

The reduction in the area to be sprayed using the prescription
maps is significant compared to traditional spraying, which com-
prises spraying the entire field. Depending on the cell size and the
threshold percentage for decision making, the area reduction for
spraying can go from 65.29% to 93.35% with the VARI classifica-
tion and from 42.43% to 87.82% with the OpenCV ANN classifi-
cation. However, these data should be considered with caution,
taking into account the classification precision, the level of infes-
tation where, in the case of complete coverage by the weeds, blan-
ket spraying might be the only option; and the potential damage
that can be caused by the plants that could be skipped during the
field treatment using this method. This may result in possible dam-
age to crops caused by inadequate herbicide targeting (Hall et al.,
2000; Kudsk and Streibig, 2003; Wolf, 2009; Lottes et al., 2017). 

It is also important to emphasize that the authors have set the
decision-making thresholds arbitrarily based on their experiences
to observe the changes in the area to be sprayed. Therefore, while
they could, they should not necessarily be considered as thresholds
to use. The progress in spatial detection of weeds is also followed

by the progress in technologies for precise herbicide application,
which is one of the key points allowing the creation of prescription
maps and the reduction in the quantity of herbicides used
(Gopalapillai et al., 1999; Baillie et al., 2013; Gerhards, 2013;
Gonzalez-de-Soto et al., 2016; Partel et al., 2019). By modelling
the possible reduction in cost and amount of the two herbicides
used, it is evident that a reduction in their use is dependent on the
reduction of the area to be treated. Therefore, it is also highly
dependent on the classification precision and on the precision of
systems for herbicide application, translated to cells of prescription
maps. As so, we computed the reduction in the quantity and costs
comparing the two classification methods, whilst considering dif-
ferent decision-making thresholds, both for Equip (Table 3) and
Titus Mais Extra (Table 4). In the tables, the cost of effective quan-
tity needed for treatment of the area proposed by the methods is
shown in the columns ‘cost’, while in the columns ‘savings,’ it is
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Figure 6. Comparison of the prescription maps for the visible
atmospherically resistant index classification method. Examples
for the 5% threshold for three cell sizes to be sprayed, namely:
3.00 m2 (A), 2.00 m2 (B), and 0.25 m2 (C).

Table 2. Possible spraying area reduction in a field of 1 ha.

VARI
   1% infestation              5% infestation         10% infestation
Cell size     Area to be sprayed (ha)        Reduction %           Area to be sprayed (ha)     Reduction %         Area to be sprayed (ha)        Reduction %

0.25 m2                              0.35                                      65.29                                         0.19                                  80.59                                      0.15                                     85.36
2.00 m2                              0.15                                      85.33                                         0.15                                  84.82                                      0.11                                     88.88
3.00 m2                              0.12                                      88.05                                         0.09                                  91.42                                      0.07                                     93.35

OpenCV ANN
1% infestation                     5% infestation         10% infestation

Cell size     Area to be sprayed (ha)        Reduction %           Area to be sprayed (ha)     Reduction %         Area to be sprayed (ha)        Reduction %

0.25 m2                              0.58                                      42.43                                         0.30                                  69.97                                      0.21                                     78.94
2.00 m2                              0.50                                       49.7                                          0.26                                  73.72                                      0.17                                     83.00
3.00 m2                              0.22                                      77.57                                         0.16                                  84.03                                      0.12                                     87.82
VARI, visible atmospherically resistant index; ANN, artificial neural network.
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shown how much money can be saved by treating only the area
proposed by the methods compared to the cost of herbicides quan-
tity necessary for the treatment of the whole field.

For Equip (Table 3), it is possible to see great differences in the
reduction of quantity used and in savings between both the classi-
fication methods and decision-making thresholds. For the OpenCV
ANN classification, the quantity used can go from 1.32 L/ha to
0.28 L/ha, a significant reduction considering that the quantity
used would be 2.3 L/ha with blanket spraying. As a consequence,
the savings can go from 22.81 €/ha to 47.20 €/ha, again an impor-
tant cost reduction considering that for the traditional spraying, the
cost would be 53.75 €/ha. As for the VARI classification, the quan-
tity used can go from 0.80 L/ha to 0.15 L/ha, which is notable con-
sidering the quantity needed for traditional spaying. Moreover, the
savings are significant for VARI, going from 35.09 €/ha to 50.18
€/ha. Also, for Titus Mais Extra (Table 4) is possible to observe
important differences in reducing the quantity of herbicides used
and the associated savings between both the classification methods
and decision-making thresholds. For the OpenCV ANN classifica-
tion, the quantity used can go from 46.06 g/ha to 8.19 g/ha, a
notable reduction considering that the quantity used would be 80
g/ha for traditional spraying.

Meanwhile, the savings can go from 15.91 €/ha to 32.93 €/ha,
which is also very important considering that the cost would be
37.5 €/ha for traditional spraying. For VARI classification, the
quantity can go from 27.77 g/ha to 5.32 g/ha, both much lower
than the 80 g/ha required for blanket spraying. Furthermore, the
savings are also high, ranging from 24.48 €/ha to 35.01 €/ha. All
prices are indicative of the 2020 market value.

It is important to note that despite differences in the quantity of
spraying required between the two methodologies used and differ-
ent decision-making thresholds, they offer a substantial reduction
in herbicide use compared to traditional spraying. Consequential
cost reduction can also be significant, especially if the area to be
treated is extensive. These results are similar to the results from
different studies done worldwide. For example, in their work,
Slaughter et al. (1999) found that by implementing precision
spraying, the area to be sprayed can be reduced from 100% to
approximately 57%, making the chemical weed control 3.7 times
more efficient. Additionally, Hamouz et al. (2013) found that the
reduction in herbicide application can increase from 15.6% to
100%, depending on the different methodologies and thresholds
used. The authors also agree that a higher decision-making thresh-
old equates to more herbicide savings. Other works, such as that
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Table 3. Possible savings associated with various degrees of quantity reductions of herbicide (Equip).

OpenCV ANN
Cell size                                                  1%                                                               5%                                                        10%
                                 Quantity              Cost             Savings         Quantity         Cost       Savings         Quantity        Cost         Savings 
                                   (L/ha)              (€/ha)           (€/ha)            (L/ha)         (€/ha)      (€/ha)            (L/ha)         (€/ha)        (€/ha)

3.00 m2                                    1.32                         30.94                     22.81                       0.69                  16.14              37.61                       0.48                  11.32                42.43
2.00 m2                                    1.16                         27.04                     26.71                       0.60                  14.13              39.63                       0.39                   9.14                 44.61
0.25 m2                                    0.52                         12.06                     41.70                       0.37                   8.58               45.17                       0.28                   6.55                 47.20

VARI
Cell size                                                  1%                                                               5%                                                        10%
                                 Quantity              Cost             Savings         Quantity         Cost       Savings         Quantity        Cost         Savings 
                                   (L/ha)              (€/ha)           (€/ha)            (L/ha)         (€/ha)      (€/ha)            (L/ha)         (€/ha)        (€/ha)

3.00 m2                                    0.80                         18.66                     35.09                       0.45                  10.43              43.32                       0.34                   7.87                 45.88
2.00 m2                                    0.34                          7.89                      45.87                       0.35                   8.16                45.6                        0.26                   5.98                 47.77
0.25 m2                                    0.28                          6.42                      47.33                       0.20                   4.61               49.14                       0.15                   3.57                 50.18
ANN, artificial neural network; VARI, visible atmospherically resistant index.

Table 4. Possible savings associated with various degrees of quantity reductions of herbicide (Titus Mais Extra).

OpenCV ANN
Cell size                                                  1%                                                              5%                                                        10%
                                Quantity               Cost             Savings         Quantity         Cost       Savings         Quantity        Cost         Savings 
                                  (g/ha)               (€/ha)           (€/ha)            (g/ha)         (€/ha)      (€/ha)            (g/ha)         (€/ha)        (€/ha)

3.00 m2                                  46.06                         21.59                    15.91                      24.02                 11.26              26.24                      16.85                  7.90                 29.60
2.00 m2                                  40.24                         18.86                    18.64                      21.02                  9.86               27.65                      13.60                  6.38                 31.13
0.25 m2                                  17.94                          8.41                     29.09                      12.78                  5.99               31.51                       9.74                   4.57                 32.93

VARI
Cell size                                                  1%                                                              5%                                                        10%
                                Quantity               Cost             Savings         Quantity         Cost       Savings         Quantity        Cost         Savings 
                                  (g/ha)               (€/ha)           (€/ha)            (g/ha)         (€/ha)      (€/ha)            (g/ha)         (€/ha)        (€/ha)

3.00 m2                                  27.77                         13.02                    24.48                      15.53                  7.28               30.22                      11.71                  5.49                 32.01
2.00 m2                                  11.74                          5.50                     32.00                      12.14                  5.69               31.81                       8.90                   4.17                 33.33
0.25 m2                                   9.56                           4.48                     33.02                       6.87                   3.22               34.28                       5.32                   2.49                 35.01
ANN, artificial neural network; VARI, visible atmospherically resistant index.
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done by Takács-György (2008), indicate that by implementing pre-
cision weed controlling tactics, the reduction of herbicide usage
can be substantial, and so can the savings. This author also implies
that the initial investments in precision agriculture are paid off in a
few years due to the savings they allow.

Conclusions
Because of the herbicide traits that make them harmful to the

environment and health, their application must be improved and
reduced. In this study, an innovative approach that combines site-
specific and time-specific weed management methods are present-
ed. As is, the method could improve the performance of UAV
image classification for weed detection. Moreover, by implement-
ing the proposed method, it is possible to reduce the amount of her-
bicide used, which also reduces agricultural production costs.
Overall, the two classification approaches used have both positive
and negative traits.

On the one hand, while the OpenCV ANN produced a better
classification than VARI, it required more training and was more
time-consuming. On the other hand, the VARI algorithm showed
some limitations in weed classification, yet it was much more
straightforward to use and thus required much less time. As stated
before, the efficacy of the treatment depends on the threshold for
decision making and the cell size chosen. It is, therefore, up to the
end-user to decide which combination could suit his/her needs bet-
ter. However, as a general rule for better efficacy, one should consid-
er using lower thresholds with bigger cells, while from an economic
perspective using higher thresholds with smaller cells could also
give good results. We have shown that adding a temporal component
to precision weed detection could be very useful for herbicide reduc-
tion, as it offers information about the percentage of weed emer-
gence in time. Indeed, with the temporal AlertInf weed detection
model, it was possible to better organize the UAV survey to map the
maximum number of weeds possible according to the percentage of
weed emergence and the development stage of the crops.

Moreover, if the correct timing for UAV surveys is chosen, the
resulting prescription maps will contain a majority of weed plants
that could infest the field, thus potentially improving the spatial
detection of the most relevant weed(s). As a consequence, given
the proper use of herbicides, it might be possible to reduce the her-
bicide amount used and eliminate the need for subsequent chemi-
cal herbicide treatments. This could be a leap forward, considering
that the percentage of emerged weeds is not considered with the
traditional weed controlling methods. Consequently, in some
cases, after the first spraying, the weeds that have not yet emerged
create a second flush of infestation, compelling the farmers to
undergo a second round of herbicide treatment in order to prevent
reduced crop yield. However, with fewer and more efficient treat-
ments, the problem of herbicide resistance could be attenuated.

Nevertheless, consider that the present experiment is modular
and theoretical; therefore, it is necessary to transfer it to real situa-
tions by conducting field trials. With the field trials, it will be pos-
sible to understand how applicable these methods are and deter-
mine if the efficacy achieved corresponds to the one simulated. It
would also be possible to understand better the problems that may
occur in real-life applications and resolve them. Finally, comparing
the final yield from a field in which precision weed control meth-
ods were applied with one in which they were not applied would
provide valuable insight for a cost-benefit analysis. Other than
what has been mentioned before, further studies are required in

order to be able to address different production methods, with
more cultivated species and more weed species, in order to meet
market demands. It could also be very useful to collaborate with
the sprayer production industry to develop increasingly more pre-
cise spraying systems. Additionally, calibration of weed emer-
gence predictive models for use in different parts of the world must
also be performed so that they may be able to apply the techniques
presented in this work beyond the Veneto region.
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